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1 Introduction

Governments around the world are more likely to subsidize technologies that lead to envi-

ronmental benefits than they are to tax environmental damages (Borenstein, 2012). In the

case of solar panels, these environmental benefits vary geographically. All else equal, the

environmental benefits of solar panels are likely to be the largest in sunny areas and areas

where high-polluting power plants would otherwise produce electricity. This spatial variation

in environmental benefits suggests a rationale for spatially differentiated subsidies.

This paper uses a structural model of electricity production and household demand for

rooftop solar panels to study how subsidies should optimally vary across space. Heterogeneous

households across the country choose the number of solar panels to install, accounting for

the installation cost, the lifetime value of the electricity produced and subsidies received,

and the nonpecuniary costs and benefits of installation.1 Households can also purchase

electricity produced by a system of power plants. Individual power plants vary in the extent

to which their production leads to environmental damages, their production capacity, and

their location, which dictates how the grid transmits the plant’s electricity across geographic

regions.

Residential solar installations reduce environmental damage by decreasing fossil-fuel power

plants’ electricity production. Therefore, panels installed in areas with more sunlight have

greater environmental benefits because they lead to larger decreases in electricity produced

by these plants. The environmental benefits of solar panel installations also vary geographi-

cally because of differences in the distribution of technology employed by power plants across

space. Panels installed in areas where environmentally unfriendly plants would otherwise

produce electricity will be more beneficial than panels installed in areas with cleaner plants.

These environmental benefits are not internalized by the household, thus suggesting a role

for government intervention.2 The primary tool currently employed by US policymakers to

deal with this externality is a system of federal and state subsidies for solar panels. We use

the model to solve for the optimal subsidies and quantify the benefits of switching from the

current system of subsidies to the optimal subsidies.3 Doing so requires understanding how

solar panel installation rates and the damages associated with electricity production would

1See Borenstein (2017) for a detailed discussion of the private benefits of solar installation in the case
of California. See Borenstein and Bushnell (2022) for a discussion of how these factors shape the spatial
distribution of solar panels.

2Environmental externalities are the only source of inefficiency in our model. Thus, we abstract away
from inefficiencies arising from market power, information frictions, and borrowing constraints.

3We focus on the optimal choice of subsidies for rooftop solar panels and do not allow for other types of
government intervention, such as pricing the externality via a carbon tax. See Eichner and Runkel (2014) for
an argument for why countries may choose to subsidize green energy production even when they have access
to carbon taxes.
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change in response to alternative subsidy schemes. Therefore, our approach is to estimate a

quantitative version of our model to calculate the optimal policies and the associated benefits.

Our primary data source is the DeepSolar Project (Yu et al., 2018), a dataset of the uni-

verse of residential solar panel installations in the contiguous US. Deepsolar uses a machine-

learning framework to identify solar panel installations from satellite imagery. We supplement

these data with data from Google Project Sunroof, another satellite-imagery-based dataset

that provides information on solar irradiance across the US and on the number and size

of rooftops suitable for solar panel installations. Combined, these two datasets provide the

distribution and size of solar panel installations as well as solar irradiance and space suitable

for solar panels across the US. We utilize these novel data sources to estimate the household

component of the model via indirect inference, thereby providing the first estimated model

of solar panel demand across the US. To facilitate identification, we utilize a border disconti-

nuity approach, which exploits variation in subsidies on either side of state borders. Though

sparsely parameterized, our household installation model matches the spatial distribution of

installations well. We also show that our estimates are consistent with quasi-experimental

evidence on the responsiveness of installations to solar rebates.

To model power plants, we develop a novel policy function approach that maps electricity

demand and renewable production across the country to plant-level electricity production

and emissions. Our approach allows for endogenous changes in power plants’ production

profiles in response to electricity demand and renewable production over the day and year.

We estimate these policy functions using Open Grid Emissions (OGE) data, which provide

hourly production and emissions data covering nearly every power plant in the United States.

We show that the estimated model matches the data’s temporal and spatial distribution of

electricity generation. We translate these emissions into environmental damages using AP3,

a state-of-the-art integrated air pollution model.

Our estimated model of solar panel demand and electricity production provides a frame-

work to calculate the spatial distribution of installations, environmental benefits of solar

panels, and government cost of subsidies under counterfactual subsidy schemes. We first use

this framework to solve for the optimal cost-neutral subsidy reforms and quantify the spatial

misallocation caused by the current subsidy system. Our main result is that the current

subsidy system leads to a severe misallocation of solar panels across space. Consider Wash-

ington, for example, a state where current subsidies are high even though sunlight is low and

households receive marginal energy from relatively environmentally friendly power plants.

We find that solar panels in Washington are over-subsidized by more than 80% relative to

the optimal subsidy system, leading to 90% greater installations than optimal. Decreasing

subsidies in Washington would lead to large decreases in fiscal costs with small decreases in
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environmental benefits. On the other hand, in West Virginia, where current subsidies are

low and the environmental benefits of solar installations are high, we find that panels are

under-subsidized by nearly 70%, leading to installations that are 60% lower than optimal.

More generally, panels are under-allocated by roughly 25% in the Midwest and South and

over-allocated by 35% in the Northeast.4

We find that the misallocation caused by the current system of subsidies leads to sub-

stantial environmental costs. Switching from the current subsidies to the welfare-maximizing

subsidies leads to a 4.5% increase in aggregate environmental benefits—environmental dam-

ages decrease by approximately the same amount as a 4.5% increase in the productivity of

every rooftop solar panel in the US. Switching to subsidies set by a planner aiming to mini-

mize environmental damages rather than maximize welfare would lead to a 10% increase in

aggregate environmental benefits.

Next, we calculate optimal subsidies when the government does not face an externally

set budget constraint. Generally, these unconstrained optimal subsidies are substantially less

generous than current subsidies: current subsidies exceed optimal levels in all but three states.

As a result, total installations under the optimal subsidies are roughly one half of the current

amount, leading to a decrease of nearly 60 million dollars in annual environmental benefits

relative to the current level. However, the accompanying 320 million dollar annual decrease in

government costs thoroughly outweighs the decrease in environmental benefits. Put another

way; the optimal unconstrained subsidies achieve nearly half of current environmental benefits

at one-seventh the current cost. Our results suggest rooftop solar subsidies not only deviate

from the optimum in how they vary across space but are also excessively generous in general.

Finally, we compare the effects of marginal subsidy changes around the current system of

subsidies. We find large differences in the cost-effectiveness of subsidy increases across states.

For example, the environmental damages offset per dollar of government funds associated

with subsidy increases in West Virginia are over five times greater than the damages offset

per dollar of subsidy increases in Washington. These results highlight that changes around

the current system of subsidies could lead to decreases in both environmental damages and

fiscal costs.

The remainder of the paper consists of various extensions and robustness checks. We an-

alyze the sensitivity of our results to 1) alternative specifications of household preferences, 2)

accounting for line losses in transmitting electricity from plants to homes, 3) the introduction

of improved electricity storage technology, and 4) changes in utility-scale renewable electric-

ity production. We find that the optimal system of subsidies remains qualitatively the same

4In Section 6.3, we calculate the optimal system of subsidies when subsidies are allowed to vary nonpara-
metrically by census tract. We calculate similar levels of misallocation when the optimal subsidies are allowed
to vary by census tract rather than by state.
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across these specifications. Quantitatively, our results suggest that optimal unconstrained

subsidies will be even lower in the future as utility-scale renewable electricity production

continues to expand.

Our paper is most closely related to several papers which use model-based approaches to

quantify the effectiveness of various types of subsidies on inducing solar panel installations

(e.g., Burr (2014), De Groote and Verboven (2019), Langer and Lemoine (2022), Feger,

Pavanini, and Radulescu (2022)). These papers use rich, dynamic models to study the trade-

offs associated with various subsidy schemes. Of these, our paper is closest to Feger, Pavanini,

and Radulescu (2022), which studies optimal installation subsidies and energy tariffs in a

model with household energy consumption and solar panel demand.5 While all these papers

focus on solar panel installations, we provide a framework that can additionally quantify the

environmental benefits of solar panel installations, arguably the main reason these subsidies

exist. As such, we are the first paper in this literature to quantify the trade-offs between

the environmental benefits and fiscal costs of residential solar subsidies. We additionally

contribute by quantifying the spatial misallocation due to current subsidy schemes through

our analysis of how these subsidies should optimally vary across space.6 As discussed in the

following paragraph, the reduced-form literature has emphasized the importance of spatial

differences in the environmental benefits of solar panels. However, no quantitative research

has incorporated these spatial differences in a study of optimal subsidy design.

This paper is also related to a literature estimating the extent to which the marginal ben-

efits of renewable energy investments vary geographically (e.g., Holland and Mansur (2008),

Siler-Evans et al. (2013), Graff Zivin, Kotchen, and Mansur (2014), Holland et al. (2016),

Millstein et al. (2017), Callaway, Fowlie, and McCormick (2018), Holland et al. (2020), Brown

and O’Sullivan (2020)). In particular, this paper is similar to Borenstein and Bushnell (2022),

who relate estimates of the marginal social cost of electricity production to the spatial dis-

tribution of solar panels in the US, and to Sexton et al. (2021), and Lamp and Samano

(2023), who study the marginal benefits of solar panel installations and calculate the benefits

of reallocating panels across space.7 While these papers establish that the current spatial

5Feger, Pavanini, and Radulescu (2022) quantify the cost-minimizing and welfare-maximizing subsidy
and tariff schemes subject to a network financing constraint and a solar energy target. They also allow the
government to have a preference for redistribution, something we refrain from doing in our paper.

6More broadly, our paper is also related to recent papers using quantitative approaches to measure the
environmental consequences of subsidizing renewable energy or environmentally-friendly goods (e.g., Shapiro
(2021), Jacobsen et al. (2022), Holland, Mansur, and Yates (2022), Arkolakis and Walsh (2022)). This paper
is also related to Miller et al. (2019), who calculate the optimal geographically-differentiated government
subsidies for Medicare Advantage.

7In the sustainability literature, Tibebu et al. (2021) calculate the subsidies which maximize environmental
benefits less government cost at the national and state level. Their analysis does not account for household
utility and therefore omits a key component of the social benefit of subsidies. They also do not model the
household decision to install solar panels but instead model solar installation rates as following a normal
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distribution of solar panel installations does not maximize environmental benefits, they do

not model demand for solar panels and, therefore, do not quantify how installations respond

to various subsidy schemes. The goal of our paper is to quantify the extent to which gov-

ernment policy causes this misallocation and solve for the system of subsidies that remedies

this misallocation. Our contribution is, therefore, to build and estimate a structural model

of solar panel demand and electricity production, which we use to quantify the effects of

alternative subsidy schemes on the distribution of solar panel installations and calculate the

resulting environmental benefits and fiscal costs. Specifically, we provide the first estimated

model of solar panel demand across space in the US. We also develop a novel, tractable

approach to modeling power plant production and the associated emissions over space and

time. This approach involves directly modeling how individual plants’ electricity production

and emissions endogenously respond to changes in solar and other renewable production.

Finally, this paper is related to several empirical papers which estimate the elasticity of

solar panel installations with respect to subsidies. We discuss these papers in Section 5.1.3.

We use the estimates from these papers to evaluate the performance of our estimated model.

2 Model

We combine a model of household solar panel demand with an electricity production model.

Households are distributed geographically across the United States, and states vary in their

electricity prices, installation prices, and the set of subsidies for solar panels they offer. Within

states, households vary in their local solar irradiance (sunlight), the amount of space they

have for potential solar panels, and their preferences over solar panel installation. Households

choose the number of solar panels to install, accounting for electricity and installation prices,

solar panel subsidies, and their individual preferences for installing solar panels.

In addition to residential solar panels, central generation power plants produce electricity.

Power plants differ in the extent to which their electricity production leads to environmental

damages and their location, which determines how the electricity they produce is distributed

across the country. Further, power plants face capacity and non-negativity constraints and

vary in the order in which they are dispatched, implying that some power plants will only

operate when demand is sufficiently high while others will operate even when demand is low.

distribution in the net present value of installation.
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2.1 Households

Households, indexed by i, are endowed with income yi and N̄i spaces they can potentially

use for solar panels. Household i has access to a solar panel technology that can produce a

stream of solar energy of {Ait}Tt=0 over the lifetime of the panel for each panel they choose to

install. In practice, we will think of t as indexing hours and set the lifespan of a solar panel to

25 years.8 We can think of this solar technology as reflecting the intermittent sunlight profile

at a given household’s residence, accounting for the depreciation of solar panel efficacy over

time.Let j index the state in which the household lives.

Households choose whether or not to install solar panels, mi ∈ {0, 1}, the number of

panels conditional on installation, Ni ∈
(
0, N̄i

]
, and how much electricity to consume each

period. Specifically, households choose a sequence of electricity usage {eit}Tt=0, where eit gives

household i’s energy consumption in period t. We assume the household pays a constant price

of pj for all electricity purchased.9 Let r denote the real interest rate and let ei =
∑T

t=0
eit

(1+r)t

denote the discounted sum of energy consumed, such that pjei gives the present discounted

cost of electricity consumed.

If a household chooses to install solar panels, they pay the cost of installation of pInsj (Ni),

which is a function of Ni, the number of panels they choose to install.10 The installation cost

function pInsj (·) can vary nonlinearly in Ni and is allowed to vary by state j.11 Households

can use electricity generated by solar panels to power their home or can sell it back to the

grid. Assume, for now, that households can sell back to the grid at the price of electricity

purchased, pj, as is the case for households in states with net metering. We discuss how we

model households without net metering in Online Appendix B.1.12 Letting Ai =
∑T

t=0
Ait

(1+r)t

denote the discounted sum of electricity production, we can write the present discounted

value of energy produced by each solar panel for household i as pjAi.

Households receive subsidies for solar installations. We allow for three types of solar panel

8This is a standard value of the average useful life of solar panels (see e.g., Xu et al. (2018), Chowdhury
et al. (2020), or Sodhi et al. (2022)).

9We assume that electricity prices are constant over time. While electricity prices change over time, there
is evidence that consumers do not correctly forecast the extent to which prices change over time and expect
future prices to be similar to current prices (Hughes and Podolefsky, 2015; Anderson, Kellogg, and Sallee,
2013). Further, we assume these electricity prices are fixed across counterfactuals and, therefore, abstract
from the general equilibrium effects of subsidies on electricity prices. Utility companies act as regulated
monopolies, which limits their ability to change prices in response to demand-side changes.

10We assume a partial equilibrium setting where these installation costs are given exogenously and do not
change in response to changes in subsidies.

11We assume a nonlinear pricing function to allow for the possibility that there is a fixed cost associated
with installing a positive number of panels.

12In 2017, 39 states mandated net metering policies. Idaho did not have a state net-metering policy, but
each of the state’s three investor-owned utilities had a net-metering policy. Five other states in our sample
have distributed generation rules other than net metering.
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subsidies that capture the majority of state and federal subsidies in the US. First, households

can receive a cost-based subsidy sCost
j , which pays a percentage of the solar installation cost,

similar to the federal investment tax credit.13 Second, households can receive a production-

based subsidy of skWh
j for each kWh of electricity produced by their solar panels, similar to

solar renewable energy certificates. Finally, we allow for a per-panel subsidy sPanelj , such as

subsidies that pay per kilowatt of solar capacity installed.

We can thus write the household’s budget constraint as

ci + pj (ei −miNiAi)︸ ︷︷ ︸
Net cost of electricity

+mi

(
1− sCost

j

)
pInsj (Ni)︸ ︷︷ ︸

Net cost of installation

= yi + miNiAis
kWh
j︸ ︷︷ ︸

kWh Subsidy

+ miNis
Panel
j︸ ︷︷ ︸

Per-Panel Subsidy

(1)

where ci is consumption of the numeraire good.14

Households have the following quasilinear utility function

ci + νi

(
{eit}Tt=0

)
+miγi (Ni) ,

where γi (Ni) is a strictly concave function which gives the nonpecuniary benefit of adding

Ni solar panels for household, and νi

(
{eit}Tt=0

)
is a function which gives the lifetime utility

of electricity usage. The function γi (·) captures inconvenience costs and any other individual

preferences for installing solar panels.

Note that the choice of electricity consumption does not depend on the household’s choice

to install panels.15 Thus, we can think of household optimization as a two-step process. First,

the household chooses electricity use, {e⋆it}
T
t=0, then decides whether to install solar panels

and the number of panels conditional on installation. In this second stage, we can rewrite

the household’s optimization problem as a choice of Ni and a discrete choice of mi:

Vi = max
Ni,mi∈{0,1}

mi [µij (Ni) + γi (Ni)] . (2)

where

µij (Ni) = NiAi

(
pj + skWh

j

)︸ ︷︷ ︸
Total electricity value

−
(
1− sCost

j

)
pInsj (Ni)︸ ︷︷ ︸

Net installation cost

+ Nis
Panel
j︸ ︷︷ ︸

Per-panel subsidy

(3)

denotes household i’s net monetary benefit of installing solar panels.16 Let m⋆
i denote the

13In estimation, we will also consider sales tax exemptions and property tax exemptions as cost subsidies.
14We can think of ci and yi as the present values of consumption and income over time, respectively.
15This results from the assumptions that 1) utility is quasilinear and 2) electricity can be bought and sold

at the same price.
16Note that we have dropped a constant representing the household’s utility from electricity use and costs

but does not affect the decision to install solar panels.

7



household’s optimal installation choice and let N⋆
i denote the optimal number of panels

conditional on installation.

From equations (2) and (3), we can see that different types of subsidies will differ in the

distribution of households they induce to install panels. Households in sunny areas (high Ai)

are more likely to respond to the production subsidy skWh
j , while households in areas with

high installation costs are more likely to respond to the cost subsidy sCost
j , for example.17

Further, changes in subsidies affect installations via both intensive and extensive margin

adjustments: increases in subsidies can increase both the total number of installations and

the number of panels per installation. As we show in Section 2.3, the planner chooses the

optimal set of subsidies accounting for these intensive and extensive margin adjustments and

for the fact that different households are marginal with respect to each type of subsidy.

2.2 Electricity Production

2.2.1 Background

Before proceeding to the model, we give a brief overview of electricity production in the US.

The electricity sector in the US is highly regulated and does not operate like a traditional

market. Each of the around 10,000 central generation power plants in the US is overseen

by a balancing authority, an entity tasked with matching electricity supply and demand by

managing production from individual plants and trading with other balancing authorities.

Transmission of electricity between balancing authorities disproportionately occurs within

larger regions called NERC regions, each constituting a relatively closed market of balancing

authorities. Transmission across regions does occur, but this inter-regional transmission

occurs almost exclusively within interconnections, a geographic unit larger than a region.

There are three interconnections in the US: Eastern, Western, and Texas.

We can divide power plants into those that are dispatchable and those that are nondis-

patchable. Nondispatchable power sources are those whose output cannot be easily controlled

in response to fluctuations in electricity demand and generally produce when available, such

as wind and solar. These energy sources are generally intermittent, meaning their productive

capacity fluctuates over time in response to environmental factors, e.g., sunlight and wind.

Nondispatchable power plants generally do not produce pollutants or greenhouse gases.

On the other hand, balancing authorities can control production by dispatchable power

plants to satisfy electricity demand. The production profile of a given dispatchable plant is

17De Groote and Verboven (2019) find that households heavily discount future benefits associated with
solar installations. This result implies that cost-based subsidies may be more effective at inducing installa-
tions than production-based subsidies because households receive cost-based subsidies sooner. It would be
straightforward to examine our results’ robustness to alternative household discount rate values.
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determined by its position in the dispatch curve—the order at which balancing authorities

dispatch power plants to satisfy different electricity demand levels.18 This implies that a

power plant’s production is not simply proportional to demand—some power plants operate

continuously throughout the day while others only operate at peak levels of demand. As

such, the set of marginal power plants, and therefore the marginal benefits to residential

solar installation, vary geographically and within location as a function of demand that must

be satisfied by dispatchable plants.

2.2.2 Model: Electricity Production

Within the model, three sources supply electricity: 1) residential solar, 2) nondispatchable

plants, and 3) dispatchable plants.19 Nondispatchable units are assumed to operate at full

capacity conditional on environmental conditions (e.g., sun and wind) and conditional on total

demand exceeding the amount produced by these nondispatchable generators.20 Therefore, as

long as demand exceeds the amount produced by nondispatchable sources, the production by

these power plants is independent of demand and production by other plants. Alternatively,

the production by dispatchable units depends on excess demand remaining after production

by residential solar and nondispatchable plants.21

Residential Solar and Nondispatchable Plants Let R index NERC regions.22 Total

residential solar production in region R in a given hour t is the sum of energy produced

by residential solar panels, ESolar
Rt =

∫
i∈IR

m⋆
iN

⋆
i Aitdi, where IR is the set of households who

reside in region R. Similarly, total production by nondispatchable plants in region R in

time t is given by ENonD
Rt =

∑
k∈KR

yNonD
kt , where yNonD

kt denotes electricity production by

18Power plants’ variable cost of production generally determine the dispatch curve. Power plants with the
lowest variable costs (often nuclear and hydroelectric) typically satisfy low demand. Meanwhile, plants with
higher variable costs (such as gas-fired plants) begin operating only when electricity demand is sufficiently
high.

19We assume the distribution of power plants and the characteristics of the grid are exogenous. In reality,
a large change in residential solar production may lead to the entry and exit of generators and changes in
the organization of the electricity grid. In Section 7.4, we analyze the robustness of our results to alternative
assumptions about the distribution of power plants. See Holland, Mansur, and Yates (2022) for a model which
includes endogenous entry and exit of generators and storage capacity. See Arkolakis and Walsh (2022) for
a model with endogenous grid formation.

20In this case, we assume production of nondispatchable plants is curtailed such that supply does not
exceed demand.

21This assumption is similar to an assumption made by Callaway, Fowlie, and McCormick (2018), who
assume that only fossil-fuel power plant production is affected by changes in renewable production.

22We will assume 7 NERC regions in our quantitative analysis. Officially, the North American Electric
Reliability Corporation (NERC) divides the US into 6 regional entities. Following Holland et al. (2016), we
separate California from the WECC region, leaving us with 7 regions. We discuss how we define the regions
in Online Appendix A.7.
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nondispatchable power plant k in time t, and KR is the set of nondispatchable plants in

region R. yNonD
kt is allowed to vary fully by power plant k and time t, reflecting differences

in environmental factors across plants and over time, and we assume it is independent of

demand and production from other power plants.

Dispatchable Plants To capture the centralized manner by which balancing authorities

dispatch power plants to satisfy electricity demand, we model dispatchable plants’ behavior

via policy functions that map excess demand to plant-level production. Let LoadRt denote

the total electricity demand in region R in time t,23 and let ELoadRt = LoadRt−ENonD
Rt −ESolar

Rt

give the electricity demand in region R that is not satisfied by residential solar and nondis-

patchable plants. We write production by dispatchable plants as a reduced-form function of

excess demand across regions, subject to non-negativity and capacity constraints. Letting

yDisp
kt denote production by dispatchable plant k in time t, we specify

yDisp
kt =


0 if fk (ELoadt, εkt) ≤ 0

fk (ELoadt, εkt) if 0 < fk (ELoadt, εkt) < ȳk

ȳk if fk (ELoadt, εkt) ≥ ȳk

, (4)

where ȳk is power plant k’s nameplate capacity, the maximum productive capacity of the

plant, ELoadt is the vector of excess loads in each region at time t, and fk (ELoadt, εkt) is

a plant-specific function of excess load across regions and a cost shifter εkt.
24 We allow the

function fk (·) to differ across plants to reflect heterogeneity in the order in which plants are

dispatched. We also allow fk (·) to depend not only on excess load in a power plant’s own

region but potentially to depend on excess load across other regions as well. This dependence

reflects that electricity can be transmitted across regions in response to excess demand.

Intuitively, yDisp
kt captures how production by an individual power plant k in a given hour

t responds to fluctuations in electricity demand and nondispatchable production across the

grid. For example, as the sun goes down and solar production decreases, excess load will

increase across the country, particularly in regions heavily reliant on solar energy. yDisp
kt tells

us how individual power plants are dispatched to match these increases in excess load.

23This is equal to the sum of household electricity demand plus industrial and commercial electricity
demand, which we treat as exogenous.

24We assume that the plant’s policy function depends only on the current excess demand levels. Hypothet-
ically, production could also depend on previous electricity demand and production if, for example, the grid
can store significant amounts of electricity over time or if plants face significant ramping constraints. We can
accommodate this extension by allowing the function fk (·) to depend on lagged values of excess demand, or
on lagged production levels of the individual plant.
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2.2.3 Damages

Let dk

(
yDisp
kt

)
be a function that maps dispatchable power plant k’s electricity production in

time t to the total environmental damages associated with the plant’s emissions of greenhouse

gases and air pollutants. Let Dt (ELoadt) =
∑

k dkt

(
yDisp
kt

)
denote total damages from all

power plants in time t and let D (ELoad) =
∑T

t=0
Dt(ELoadt)

(1+r)t
denote the net present value of

all damages over time, where ELoad gives the excess load across all region and time periods.

The external benefit of a marginal solar panel installed by household i equals the damages

offset over the panel’s lifetime. We write this as

∆Di (ELoad) ≡
∣∣∣∣∂D (ELoad)

∂Ni

∣∣∣∣ = T∑
t=0

Ait

(1 + r)t

∣∣∣∣∂Dt (·)
∂ESolar

Rt

∣∣∣∣ ,
the present discounted sum of the product of Ait, the electricity produced by the panel in

any given period, and the absolute value of ∂Dt(·)
∂ESolar

Rt
, the marginal damages associated with

nondispatchable plant production.

2.3 Government’s Problem and Optimal Subsidies

The government chooses subsidies to maximize the sum of total utility minus total envi-

ronmental damages subject to an externally set budget constraint.25 We consider a gov-

ernment who does not face a budget constraint in Section 6.4. To ease up on notation,

let sij = sPanelj N⋆
i + skWh

j AiN
⋆
i + sCost

j pInsj (N⋆
i ) denote the total subsidy paid to household i

conditional on installation. Further, let
∂N⋆

i

∂sθj
give the derivative of solar panels installed by

household i with respect to a given subsidy type θ ∈ {kWh,Panel,Cost}, and let −→mi
θ indicate

the household i is on the margin of installing a positive number of panels with respect to a θ

subsidy, meaning the household does not install given the current subsidies but would install

in response to a small increase in the given subsidy. Finally, let Mj =
∫
i∈Ij midi denote

the total number of households who install solar panels in state j, where Ij is the set of

households in state j.

25We are assuming that these are the only policy instruments the government can access. The government is
restricted to not price the externality directly, as in Pigou (1920). Changes in subsidies could also change firm
profits. We assume that the government does not value profits of utility companies or solar panel installation
companies. In reality, utility companies operate as regulated monopolies, where profits are directly limited.
Profits of solar panel installation firms not entering the government’s objective is also consistent with a model
in which the price of installation is always equal to the marginal cost of an installation. We analyze a planner
who minimizes environmental damages in Section 6.2.
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The government maximizes the sum of utility less environmental damages,∫
i

Vidi︸ ︷︷ ︸
Utility

−D (ELoad)︸ ︷︷ ︸
Damages

. (5)

The government faces the constraint that the sum of subsidies cannot exceed an externally

set constraint ∑
j

∫
i∈Ij

sijm
⋆
i di︸ ︷︷ ︸

Government Cost

≤ G, (6)

where G is the maximum amount the government can spend on subsidies.26 We can refor-

mulate the government’s objective function as the Lagrangian

W =

∫
i

Vidi︸ ︷︷ ︸
Utility

−D (ELoad)︸ ︷︷ ︸
Damages

−λ


∑
j

∫
i∈Ij

sijm
⋆
i di︸ ︷︷ ︸

Government Cost

−G

 , (7)

where λ is equal to the marginal cost of public funds. In practice, we will set G to the present

discounted value of the national cost of solar subsidies, given the current system of subsidies.

The optimal system of subsidies must satisfy ∂W
∂sθj

= 0 for each type of subsidy in each

state, which implies

∂Mj

∂sθj
×
(−−→
∆Dθ,ext

j − λ−→s θ,ext
j

)
︸ ︷︷ ︸

Extensive Margin

+
∂Nj

∂sθj

∣∣∣∣∣
Mst

j

×

(
−−→
∆Dθ,int

j − λ

−−→
∂s

∂N
θ,int
j

)
︸ ︷︷ ︸

Intensive Margin

+(1− λ)Mj
∂sij
∂sθj︸ ︷︷ ︸

Mechanical Effect

= 0. (8)

We provide a derivation for equation (8) in Online Appendix B.3 and provide definitions for

each individual object in the upcoming text. The first term (“Extensive Margin”) captures

the trade-off between environmental benefits and fiscal costs associated with households who

are additional with respect to a small subsidy increase: the households who currently do not

install any solar panels but would install solar panels in response to a slight increase in a

given subsidy sθj . The term
∂Mj

∂sθj
=

∫
i∈Ij

−→mi
θdi

26Our framework does not account for distributional effects because utility is quasilinear and Pareto weights
are equal across households, which implies equal marginal social welfare weights across households. This setup
also implies that household utility is measured in dollar equivalents and, therefore, can be compared directly
to environmental damages. See Section 7.5 for a discussion of distributional effects.
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gives the number of households on the margin of installing solar panels with respect to a

given subsidy type sθj . These additional installations lead to a societal benefit by reducing

environmental damages. The average damages offset across additional installer households

is denoted as
−−→
∆Dθ,ext

j and is formally given by

−−→
∆Dθ,ext

j =

∫
i∈Ij ∆Di

(
ELoadSB

)
N⋆

i
−→mi

θdi∫
i∈Ij

−→mi
θdi

,

where ELoadSB is the excess load under the optimal system of subsidies. These additional

installations also receive subsidies and thus are associated with a fiscal cost. We denote the

average cost associated with a marginal installation household as −→s θ,ext
j , formally written as

−→s θ,ext
j =

∫
i∈Ij sij

−→mi
θdi∫

i∈Ij
−→mi

θdi
.

The second term of equation (8) (“Intensive Margin”) captures the environmental-fiscal

trade-offs associated with intensive margin adjustment: increases in the number of panels

purchased for households who already choose to install a positive number of panels. The

term
∂Nst

j

∂sθj

∣∣
Mst

j
gives the total increase in panels associated with an increase in a given subsidy,

holding the set of households who install solar panels constant, which we write as

∂N st
j

∂sθj

∣∣∣∣∣
Mst

j

=

∫
i∈Ij

m⋆
i

∂N⋆
i

∂sθj
di.

The terms
−−→
∆Dθ,int

j and
−→
∂s
∂N

θ,int
j give the average damages offset and the average fiscal cost,

respectively, associated with these additional panels.27 Taken together, these first two terms

show that the government will optimally increase subsidies which induce a greater number

of additional installations and additional panels from households associated with significant

environmental benefits and for whom fiscal costs are low.

The final term (“Mechanical Effect”) captures the effects of increasing subsidies for the

non-additional households: the households who already choose to install solar panels and

thus receive a larger subsidy from the government. The total size of this transfer is the

total number of panels installed in state j, Mj, multiplied by the average increase in subsidy

for households who have installations,
∂sij
∂sθj

, holding installations and the number of pan-

27These are formally given by
−−→
∆Dθ,int

j =

∫
i∈Ij

∆Di(ELoadSB)m⋆
i

∂Ni
∂sθ

j

di∫
i∈Ij

mi
∂Ni
∂sθ

j

di
and

−→
∂s
∂N

θ,int
j =

∫
i∈Ij

∂sij
∂Ni

mi
∂Ni
∂sθ

j

di∫
i∈Ij

mi
∂Ni
∂sθ

j

di
.
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els constant.28 Each dollar transferred to these non-additional households increases welfare

by (1− λ), which reflects the increase in household utility less the decrease in government

funds.29 In summary, equation (8) measures the effects of subsidy changes on welfare, ac-

counting for environmental benefits, fiscal cost, and household utility.

However, solving for optimal subsidies requires more structure on the problem. While it

may be possible to calculate the environmental benefits of marginal solar panel installations

given the current distribution of solar panel installations, to solve for the optimal subsidies,

we need to know how marginal benefits change in response to different subsidy schemes.

Given that power plants’ production plans are nonlinear, the marginal damages evaluated

at current installation levels will differ from those at the optimum. Further, the optimal

subsidies characterized by equation (8) depend not only on marginal damages, but also on

the number of non-additional households and the number of households on the margin of

installation with respect to various types of subsidies. Like the marginal damages, both of

these objects are a function of the system of subsidies.

Therefore, our approach is to estimate a fully specified version of our model, and then

use that model to quantify the system of optimal subsidies. Further, the structural model

allows us to quantify the effects of alternative subsidy schemes on the spatial distribution of

rooftop solar and the resulting environmental benefits and fiscal costs.

3 Quantitative Model

3.1 Household preferences

Let ℓ denote the census tract in which a household lives. We assume that the nonpecuniary

utility of installation of installing Ni panels, γi (Ni), is given by a polynomial term in Ni, a

term that captures differences in the benefits of installation across demographic groups, and

an idiosyncratic term. Specifically, we parameterize the nonpecuniary value of installation as

γi (Ni) = γ0 + γ1NNi + γ2NN
2
i︸ ︷︷ ︸

Polynomial in Ni

+ γdemXℓ︸ ︷︷ ︸
Local Demographics

+ σϵi︸︷︷︸
Idiosyncratic

28Formally this is
∂sij
∂sθj

=

∫
i
m⋆

i

∂sij

∂sθ
j

di∫
i
m⋆

i di
.

29Note that the utility of additional households does not show up in equation (8) since there is no first-
order welfare effectn for households who are additional with respect to a marginal subsidy increase (i.e.,
households who choose to install solar panels in response to the increase in subsidies). This result comes
from the envelope theorem. See also Colas, Findeisen, and Sachs (2021) for a discussion of the roles played
by marginal and inframarginal agents in the first-order effects of targeted subsidy increases.
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where γ0, γ1N , and γ2N are parameters, γdem is a vector of parameters, Xℓ is a vector of

demographic characteristics associated with the tract in which the household lives, and ϵi

is a logit preference draw with scaling parameter σ.30 In practice, we specify γdemXℓ =

γCollX
Coll
ℓ + γPolX

Pol
ℓ , where XColl

ℓ the fraction of individuals in the census tract with a

college education and XPol
ℓ is the fraction of democratic voters in the 2016 election.31

Recall that the number of panels installed cannot exceed the space the household has

available for panels, denoted by N̄i. The optimal number of panels conditional on installation

is therefore given by

N⋆
i = min

[
N̄i,−

(
∂µij

∂Ni
+ γ1N

2γ2N

)]
. (9)

Loosely speaking, we can see that the ratio γ1N
γ2N

dictates the average size of installations while

the parameter γ2N dictates the degree to which N⋆
i varies with subsidies.32 For example, a

smaller value of γ2N in absolute value would imply that households are more responsive to

subsidies along the intensive margin.

Given that draws of ϵi are from a logit distribution, the probability that a household

installs panels is equal to

πi =

exp

(
µij(N⋆

i )+γ0+γ1NN⋆
i +γ2NN⋆2

i +γdemXℓ

σ

)
1 + exp

(
µij(N⋆

i )+γ0+γ1NN⋆
i +γ2NN⋆2

i +γdemXℓ

σ

) . (10)

The partial elasticity of installation probability with respect to monetary benefits is equal to

∂ log (πi)

∂µij (N⋆
i )

=
1

σ
(1− πi) . (11)

Therefore, the parameter σ dictates the extent to which increases in subsidies will lead to

increases in installations. A smaller value of σ implies that increases in subsidies will lead to

larger increases in the number of installations.

30X could contain household level covariates. However, we only have installation data at the tract level.
We can therefore think of Xℓ as capturing local attitudes towards installation.

31We examine the robustness of our results to alternative specifications of this utility function in Section
7.1. It would be straightforward to allow γi (·) to depend on additional tract-level covariates or to let γ0 vary
by Census region or division. γ0 could also vary at the tract level, as long as it does not exhibit discontinuities
at state borders.

32As we explain below, we parameterize pInsj (Ni) as a fixed cost plus a constant per-panel cost. This

implies that
∂µij

∂Ni
will be constant for a given household for Ni > 0.
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3.2 Dispatchable Power Plant Production

Production by dispatchable power plant k in time t is given by equation (4). We assume

the latent function fk (ELoadt, εkt) is a quadratic of excess load in each NERC region within

plant k’s interconnection with an additive shifter denoted by εkt. Formally, letting Rk denote

the set of NERC regions within the interconnection that contains plant k, we specify

fk (ELoadt, εkt) = ψ0
k +

∑
R∈Rk

(
ψ1
RkELoadRt + ψ2

RkELoad
2
Rt

)
+ εkt, (12)

where ψ0
k is a constant term, ψ1

Rk is a parameter which dictates how fk (·) changes in response

to excess load in region R, ψ2
Rk is a parameter which dictates how fk (·) responds to excess

load squared in region R, and εkt is a normally distributed idiosyncratic term with a mean of

0 and a variance of σ2
k. Note that all the ψk parameters and σ2

k are plant-specific. We allow

fk (·) to depend on excess demand in all regions within an interconnection but not on excess

demand in other interconnections. This dependence reflects that electricity can be transmit-

ted across regions within interconnections but is rarely transmitted across interconnections.33

Our assumed functional form implies that ykt is a Tobit function with latent variable fk that

is right censored at ȳk, plant k’s nameplate capacity, and left censored at 0.

This specification allows for relatively complex production patterns as a function of excess

demand. The parameter ψ0
k dictates the values of excess demand over which a plant will

produce electricity, allowing for the possibility that some plants will operate when excess

demand is low while others will operate when excess demand is sufficiently high. For example,

all else equal, plants for which ψ0
k takes a large negative value will only have positive electricity

production when excess demand is very high, as is true of plants that tend to have a late

position in the dispatch curve. Conditional on positive production, the parameters ψ1
Rk and

ψ2
Rk will dictate the intensity at which the balancing authority dispatches a plant. Finally,

this specification allows plants to differ in the extent to which their production is transmitted

across regions. Some plants may predominantly transmit power within their own region, while

others may transmit large amounts of power to other regions within an interconnection.

Further, while the latent function fk (·) is assumed to be constant across time, we show in

Section 5.2 that our model can replicate differences in dispatchable production over the day

and year in response to fluctuations in nondispatchable production and electricity demand.

In particular, our model can generate the ramping pattern of dispatchable generators through

the afternoon as solar generation decreases and electricity demand increases. An important

caveat to our approach is that these plant-specific policy functions are not invariant to changes

33We constrain fk (·) such that the function is weakly increasing in excess load for all regions. That is, we
set fk (·) to its value at the inflection point if the function would otherwise be decreasing in excess load.
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in factors which may change the order in which plants are dispatched, such as changes in

fuel costs or the introduction of a carbon tax. However, we do not expect first-order effects

on these factors in the counterfactual subsidy schemes we investigate.

It is worth discussing how the specification of power plant production we develop here

differs from the specifications used in Holland et al. (2016) and Sexton et al. (2021). Those

papers estimate marginal emissions rates for individual power plants in which time-specific

reduced-form coefficients capture all differences in emissions rates across time. These specifi-

cations, therefore, do not model how production levels endogenously respond to fluctuations

in renewable production. As such, the estimated emissions rates for each power plant are

constant conditional on time, and independent of the amount of solar electricity produced.

Since we aim to estimate marginal emissions both under current conditions and under

significant changes to the distribution of residential solar panels, we require a different ap-

proach to modeling power plants. In our model, production varies flexibly in excess load and

therefore is endogenous to both electricity demand and production from solar and other re-

newable sources. Thus, marginal emissions are not constant as a function of residential solar

production. An additional benefit of our approach is that we identify the model’s parameters

with excess load, which takes advantage of variation in both demand and production from

nondispatchable units. The other models only leverage variation in demand.

3.3 Damages

The final piece of the model is determining damages from electricity production at power

plant k, as described by the function dk (ykt). We specify this function in two parts, first

mapping electricity generation into emissions and then mapping emissions to damages. Both

parts are plant-specific, capturing that damages from electricity production depend on a

power plant’s technology, location, and stack height. A power plant’s technology dictates the

extent to which electricity production leads to emissions, while a plant’s location and stack

height determine the extent to which emissions of local pollutants affect population centers.

Concretely, let g ∈ G index pollutants, where we assume the set G consists of the pollutants

NOx, PM2.5, SO2, and CO2 equivalent (CO2e).34 We specify emissions of each pollutant as

a power-plant-specific linear spline in production with a slope that differs above and below

power plant k’s median production. Letting y50k denote the median amount of power plant k’s

production in the data conditional on positive production, we write power plant k’s emissions

34CO2 equivalent includes emissions of other greenhouse gasses in addition to carbon dioxide, in particular,
methane and nitrous oxide. These other GHGs are converted into a common global warming potential equal
to that of one ton of carbon dioxide.
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of pollutant g as

Emisgkt (ykt) =

κ1gkykt + egkt if (ykt − y50k ) < 0

κ1gkykt + κ2gk (ykt − y50k ) + egkt if (ykt − y50k ) ≥ 0
. (13)

Power plant k’s damages in time t are then given by dkt (ykt) =
∑

g∈G δgkEmisgkt (ykt) ,

where δgk gives the marginal damages associated with emissions of g by power plant k,

accounting for power plant k’s location and stack height.

4 Data and Estimation

4.1 Data Sources

In this section, we give an overview of the main data sources we use in our analysis. Additional

details on data sources and cleaning can be found in Online Appendix A.

Solar Panel Installations Our primary source for solar panel installations is the Deepsolar

database (Yu et al., 2018), a database of solar panel installation in the contiguous US created

by applying a deep-learning model for detecting solar panels on satellite imagery from the

year 2016.35 From Deepsolar, we use tract-level data on the total number of residential solar

systems and on the total panel area covered by residential solar panels. Combining these

two measurements gives us the average size of solar installations, which we use to infer the

average number of panels per installation in each tract.

We supplement these data on solar installations with data from Google Project Sunroof

(GPS), another dataset created by applying a machine-learning framework to satellite im-

agery. This dataset provides the distribution of rooftop sizes that are suitable for solar panel

installation in each tract, which we use as the empirical analog of N̄i within each tract for

56,940 census tracts in the US.36

Rooftop Solar Production Next, we need data on {Ait}Tt=0, the stream of electricity

potentially produced by each panel installed by household i. For this, we combine data on

35Deepsolar is the first high-fidelity database of solar panel installations in the United States. Other solar
panel databases rely on either self-reported data or surveys (e.g., Open Solar Project) or do not cover the
entire contiguous US (e.g., Tracking the Sun). The machine-learning algorithm employed by Deepsolar is
highly accurate, achieving a precision of 93% and a recall of 89% in residential areas.

36These tracts include 90% of the 33 million square meters of residential solar panels in the Deepsolar
database. The GPS data specifically provide the number of buildings in each tract with the potential for
various installation size bins. We set N̄i as the midpoint of the installation size bin for all buildings which
fall in a given bin.
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yearly solar production potential from GPS with state-level time profiles of solar production

from the National Renewable Energy Laboratory’s System Advisor Model (SAM). Specif-

ically, GPS provides measures of yearly kWh that can be produced by panels in a given

tract, accounting for local weather conditions and shading. We set a household’s yearly solar

potential for newly installed panels as the mean household solar potential in the GPS data

for the household’s tract. We assume solar panel efficacy depreciates by a constant rate of

0.5% each year.37 Next, we need to determine the distribution of solar production over each

hour of the panel’s lifetime. For this, we utilize SAM, which provides engineering estimates

of electricity production with panel specifications and climate as the model inputs (Blair,

Dobos, and Gilman, 2013). For each state, we calculate the fraction of yearly solar produc-

tion produced at any given hour over the year. See Online Appendix A.4 for details. We

multiply this fraction of energy produced each hour by a household’s annual solar potential

to calculate our measure of Ait, hourly electricity production for any hour t over the panel’s

lifetime.

Subsidies and Prices For subsidies, we rely on data from Sexton et al. (2021), who

assemble data from the Database of State Incentives for Renewables & Efficiency to calculate

state and federal subsidies in 2017. For the price of electricity, we use the average retail price

of electricity as reported by the EIA.38 We use a value of r = 2% for the real interest rate.

We estimate installation prices using data from Tracking the Sun, a project collecting

data on solar panel installations by the Lawrence Berkeley National Lab. As Tracking the

Sun only covers 25 states, we assume that all states within a given Census region share the

same installation pricing function. Specifically, we assume that installation prices take the

form pInsR(j) (Ni) = p0,InsR(j) +Nip
1,Ins
R(j) , where p

0,Ins
R(j) is a fixed cost and p1,InsR(j) is a per-panel cost, and

R(j) is the Census region containing state j. We present our estimates of the installation

price functions and provide evidence that this linear pricing function is a good approximation

of prices in the data in Online Appendix C.1.

Power Plants Our electricity generation data come from Open Grid Emissions (OGE), an

open-source project aimed at creating high-quality electricity emissions data that is publicly

available (Miller et al., 2022). These data combine commonly used electricity data sources,

namely hourly electricity generation and emissions for generating units from the EPA’s Clean

Air Markets Division (CAMD), monthly production and emissions from EIA form 923, and

37Jordan and Kurtz (2013) review the literature on photovoltaic degradation rates and find a median
degradation rate of 0.5%.

38These data can be downloaded at https://www.eia.gov/electricity/state/. See Ito (2014) for
evidence that consumers respond to average, rather than marginal, electricity prices.
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hourly balancing authority by fuel type electricity generation from EIA form 930.

We use their power-systems-level and plant-level data products from 2019.39 The power-

systems-level data gives hourly electricity production for each balancing authority, broken

out by fuel category, enabling us to calculate each region’s total hourly load. The plant-level

data gives hourly electricity production and emissions for nearly 10,000 power plants. This

coverage is the main innovation of the OGE data, as previously hourly emissions and produc-

tion were only available for sufficiently large fossil-fuel plants included in the EPA’s CAMD

data. The plants excluded from CAMD data account for nearly 30% of NOx emissions, 8% of

SO2 emissions, and 7% of CO2 emissions. We use the 4,625 dispatchable plants with postive,

non-constant production in estimation, yielding over 40 million plant-hour observations after

the cleaning process described in detail in Online Appendix A.7.

Damages To calculate damages associated with emissions, we utilize AP3, a state-of-the-

art integrated assessment model that translates emissions from locations across the US into

physical and economic damages. Specifically, AP3 uses a reduced-complexity air quality

model to map emissions of local pollutants to an ambient concentration of air pollutants in

each county in the US. The model then translates these ambient concentrations into dam-

ages, using estimates of the physical effects of pollution exposure from the literature and

considering population distribution and vital statistics across counties.40 AP3 and its prede-

cessors, APEEP and AP2, have been employed extensively in the environmental economics

literature.41 In addition to AP3, we use the social cost of carbon to quantify damages from

greenhouse gas emissions.

4.2 Descriptive Patterns

Figure 1a shows how the generosity of subsidies varies across states under the current system

of subsidies. We measure subsidy generosity as the present discounted value of subsidies an

average household in each state would receive if they installed a 15-panel system, roughly

the average size of installations in the data. There is considerable variation across states in

the generosity of these subsidies. New Jersey delivers nearly 29 thousand dollars in subsidies,

compared to seven states providing no additional funding, leading to under 6 thousand dollars

39We use data from 2019 as it is the first year available from OGE and thus closest to the Deepsolar data
while also reflecting the modern electricity grid. The OGE methodology relies on the EIA form 930, which
is only available starting in mid-2018.

40AP3 calculates damages as increased mortality risk from pollution exposure. For the value of mortality
risk reduction, we use the EPA’s suggested value of $7.4 million translated into 2014 dollars.

41See, e.g., Muller, Mendelsohn, and Nordhaus (2011), Holland et al. (2016), Shapiro and Walker (2020),
Holland et al. (2020), Sexton et al. (2021), Cicala et al. (2021), Holland et al. (2021).
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(a) Expected subsidy (b) Expected monetary benefit

Figure 1: Expected subsidies and monetary benefit for a 15-panel system in each state. Colors are scaled by
the percentile of their respective value. See text for details.

Figure 2: Installed solar systems per 1000 individuals.

in subsidies from the federal government.42 Figure A4 in Online Appendix A.6 shows the

state-level subsidy generosity separately for each of the three subsidy types. The majority of

the value of subsidies comes from cost-based, rather than production-based or panel-based,

subsidies.

In addition to subsidies, the monetary incentives to install panels vary geographically

because of spatial differences in prices and sunlight.43 Figure 1b shows the monetary benefits

associated with solar panel installations. Specifically, for every household within the model,

we calculate the net present value of monetary benefits of installation, µij (N
⋆
i ), evaluated at

N⋆
i = 15. We then take the average monetary benefit over all households within a state. This

total monetary benefit therefore measures the net present value of installing solar panels in a

given state for the average household, taking into account local differences in solar irradiance,

42Other states with high subsidies include Massachusetts, Iowa, New Hampshire, Wisconsin, Washington,
and New York, with over 18 thousand dollars in expected subsidies. Alabama, Arkansas, Georgia, Mississippi,
Oklahoma, Virginia, and West Virginia are the seven states with no state-level subsidies.

43We show a map of state-level electricity prices in Online Appendix A.5.
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(a) Expected Monetary Benefit (b) Log Installations Per Capita

Figure 3: Border Discontinuities in Monetary Benefits and Installations. Each graph plots estimated location-
bin fixed effects from a regression of the variable in question on border and location-bin fixed effects. Positive
values on the X-axis represent households on the side of the border with more generous subsidies, and negative
values on the X-axis indicate the side of the border with less generous subsidies.

electricity and installation prices, and the set of local subsidies. The states with the highest

monetary benefits are located in the Northeast, a region with high electricity prices and

subsidies. Additionally, California has a high monetary value of installation, combining high

electricity prices with high levels of solar irradiance. Meanwhile, several states in the Midwest

and Mountain West have negative values, driven by lower subsidies, electricity prices, and

solar radiation. Figure 2 shows installations per capita at the census tract level. We can see

that installations are generally higher in areas with larger monetary benefits, such as most

of the Northeast and California. Meanwhile, households in the Midwest, where there are

relatively low subsidies, less sunlight, and low electricity prices, install few solar panels.

Border Discontinuities When we estimate our structural model, we use a border dis-

continuity approach, which compares installation rates on either side of state borders. Here,

we present descriptive evidence on how the monetary benefits of installation and installation

rates change as we cross the border from states with relatively less generous subsidies to

states with more generous subsidies.

For this exercise, we limit our sample to tracts within 50 miles of state borders. Given the

average solar irradiance in the border region, we calculate the net present value of subsidies a

household would receive for a 15-panel installation. Then, we classify the side of the border

for which this hypothetical subsidy is higher as the “generous” side. Finally, we divide

households into 5-mile-wide bins in locations relative to the state border. To examine how

a given variable changes as we approach and cross state borders, we follow Bayer, Ferreira,

and McMillan (2007) and regress the variable in question on state-border fixed effects and

location-bin fixed effects. We plot these estimated location-bin fixed effects, which give

the conditional average of the variable in question in a given location bin relative to the bin

nearest to the border on the less generous subsidy side (the omitted location-bin fixed effect).
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Figure 3a shows how the expected monetary benefit varies by the location relative to the

border. As before, we measure monetary benefit as the average net present value of installing

a 15-panel system in a given tract. Positive values on the X-axis represent households on the

side of the border with more generous subsidies, and negative values on the X-axis indicate

the side with less generous subsidies. By construction, tracts on the negative (left) side of

the border have lower monetary benefits, with a jump of roughly $8,000 as we move from the

less generous side of the border to the more generous side. Figure 3b shows the results for log

installation rates. There is a sharp increase in installation rates across the border—moving

from the less generous side of state borders to the more generous side is associated with

roughly a 50% increase in installations per capita.

As argued by Black (1999), Bayer, Ferreira, and McMillan (2007) and Lee and Lemieux

(2010), these discontinuities in installation rates are informative about the causal effect of

subsidies on installations if other variables which may influence installation rates are contin-

uous at state borders. One particular concern is that household preferences for solar panels

may be discontinuous at state borders. This discontinuity would occur if, for example, house-

holds with stronger preferences for solar panels sorted onto the side of the state border with

more generous solar subsidies. Though we cannot measure preferences for solar panels di-

rectly, in Online Appendix C.3, we look for suggestive evidence for this type of sorting by

plotting 1) the percent of households with college degrees, 2) the percent of households who

voted democrat in the 2016 election, and 3) average household income as a function of dis-

tance to state border. We find no evidence of sorting around state borders among these

characteristics.

Another concern is that differences in other state policies, such as state tax rates, could

drive these discontinuities. To assess this concern, we run border discontinuity regressions

of log installations per capita on subsidies for solar panels, both with and without controls

for various state taxes. Table 1 shows the results. For each column, we limit our sample to

tracts within 10 miles of state borders and regress tract-level log installations per capita on

the net present value of subsidies for a 15-panel system, tract-level household demographics,

and state-border fixed effects.44 Column (1) gives regression results without any controls for

state and local taxes. Column (2) adds the state income tax rate, measured as the average

state tax rate evaluated at a household income of 60,000 dollars, roughly the average income

in the data. Column (3) adds sales tax, measured as the average state and local sales tax

in a given state, and Column (4) adds the average property tax rate in the state.45 The

44We include fixed effects for all state pairs which share a border. For example, California-Oregon,
California-Nevada, and California-Arizona are all included as separate fixed effects.

45Sales tax data are taken from Walczak and Drenkard (2017). Property tax rates are from Sexton et al.
(2021), who estimate property tax rates using data on real estate tax payments and property values from
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Dependent Variable:

Log Installations per Capita

(1) (2) (3) (4)

NPV Subsidies ($1000s) 0.0608*** 0.0732*** 0.0728*** 0.0797***

(0.00850) (0.00439) (0.00550) (0.00749)

Income Tax NO YES YES YES

Sales Tax NO NO YES YES

Property Tax NO NO NO YES

Distance Bandwidth 10 10 10 10

Observations 6,052 6,052 6,052 6,052

*** p<0.01, ** p<0.05, * p<0.1

Table 1: Regression of log installations per capita on the net present value of subsidies for a 15-panel
installation within 10 miles of state borders. Subsidies are measured in thousands of dollars. State-clustered
standard errors in parentheses. All regressions contain border fixed effects and tract-level demographic
controls.

estimates from these border discontinuity regressions are similar across all specifications,

but the parameter estimate slightly increases as we add state tax controls. The estimate in

Column (4) suggests a $1,000 increase in subsidies is associated with roughly an 8% increase

in installations. We will control for these state tax variables in the border discontinuity

regressions we use in our structural estimation procedure.

4.3 Estimation

Households We estimate the household installation component of the model via indirect

inference. In essence, we first compute a set of “auxiliary models” that describe installation

behavior in the data, and then simulate the structural model and calculate the auxiliary

models with simulated data. We choose the six structural parameters σ, γ0, γColl, γPol, γ1N

and γ2N such that the auxiliary models computed from the model are as close as possible to

those from the data.

Our first auxiliary model is a border discontinuity regression which measures how instal-

lation rates change as we cross state borders.46 Formally, we run the following regression

using only tracts within 10 miles of state borders:

logMℓ = αµ̄ℓ + βZℓ + θborder(ℓ) + εℓ,

the American Community Survey.
46Similar border discontinuity approaches have been used frequently in the environmental literature (see,

e.g., Ito (2014), Feger, Pavanini, and Radulescu (2022), Hughes and Podolefsky (2015), or Rubin and
Auffhammer (2023)).
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where Mℓ is the total number of solar installations in tract ℓ, µ̄ℓ is the average monetary

benefit of installing a 15-panel system in tract ℓ, β is a vector of regression coefficients, Zℓ

is a vector of tract-level demographic and tax rate controls, and θborder(ℓ) is a state-border

fixed effect.47 The parameter α measures the relationship between installation rates and

monetary benefits in narrow bandwidths around state borders, controlling for border fixed

effects. We target the coefficient α as an auxiliary model parameter.48 As argued above, α

is informative of the causal effect of monetary benefits on installation, given that household

characteristics potentially correlated with preferences for solar do not exhibit a discontinuity

at state borders. Additionally, we also target 1) log installations per household in each census

tract, and 2) the average number of panels per array in each census tract.

The six structural parameters of interest are well identified. As we can see from (11), the

parameter σ dictates the extent to which installations increase with monetary benefits. This

parameter is thus identified by the coefficient α from the border discontinuity regression.

Variation in demographics across tracts then jointly identifies γ0, γColl, and γPol. Finally, the

average number of panels in each array and how the size of arrays varies across cities identify

γ1N and γ2N .

Dispatchable Power Plants We estimate the power-plant-specific policy functions de-

scribed by equations (4) and (12) via maximum likelihood. We provide the likelihood func-

tion and additional details in Online Appendix B.2. Variation over time in both electricity

demand and production by nondispatchable plants creates variation in excess loads across

regions that identifies the parameters of the plant-specific policy functions.

Damages We estimate damages by combining power-plant level emissions data from EPA’s

Clean Air Markets Division with estimates of marginal damages from AP3. We estimate the

damages given by equation (13) via ordinary least squares using power-plant level emissions

data from OGE. To translate these emissions into damages, we need an estimate of δgk, the

marginal damages associated with emissions of pollutant g by power plant k. The AP3 model

calculates the marginal damages associated with local pollutants emitted from every county

in the United States for varying stack heights. We, therefore, calculate δgk by matching

power plants to their corresponding county and stack height in the AP3 model. We assume

a social cost of carbon of 51 dollars per ton of CO2, in line with the official value currently

47We again include fixed effects for all state pairs which share a border. The vector of controls Zℓ includes
the tract-level college completion percentage and percent democrat, the state income tax rate, the sales tax
rate, and the average property tax rate.

48Our estimates of α are not sensitive to the size of the bandwidth around state borders, nor the inclusion
of demographic controls. We obtain similar estimates of structural parameters when we instead include a
regression of log installations on subsidy levels rather than total monetary benefits.
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Estimate Standard Error

Dispersion of Idiosyncratic Utility σ 12.4 0.3

Percent College γColl 7.9 1.0

Percent Democrat γPol 21.0 1.5

Constant γ0 -2171.7 633.0

Number of Panels γ1N 285.5 85.5

Number of Panels Squared γ2N -9.6 2.9

Table 2: Parameter estimates for household utility function. Standard errors calculated via bootstrapping.

used by the U.S. government.49

5 Estimation Results and Model Fit

5.1 Households

5.1.1 Parameter Estimates

Table 2 displays the estimates of parameters governing the household utility function. The

nonpecuniary value of installations is increasing in average local education and in the frac-

tion of the population that voted democrat in the 2016 election. The final two parameter

estimates, which dictate utility as a function of installation size, imply that the optimal

size of an installation is increasing in monetary benefits, but only marginally so: a $1000

increase in the monetary benefit associated with installing an additional panel leads to only

a
∣∣∣ 1
2×(−9.6)

∣∣∣ ≈ 0.05 increase in the optimal number of panels.50

To get a better sense of what the parameter estimates imply for installation probabilities,

recall that the partial elasticity of installation probability with respect to monetary benefits is

approximately equal to 1
σ
.51 Given that we measure monetary values in thousands of dollars,

our estimate of σ = 12.4 implies that a thousand dollar increase in the monetary value of

installation leads to approximately a 1
12.4

≈ 8 percent increase in the number of installations.

49There is disagreement in the literature about the social cost of CO2. Rennert et al. (2022), for example,
argue for a social cost of carbon of 185 dollars per ton of CO2. We study optimal subsidies with this value
of the social cost of carbon in Section 6.4. We do not account for the environmental damages associated
with producing and disposing of solar panels. These costs are small relative to the environmental benefits of
power produced by a solar panel (Heath and Mann, 2012).

50Recall from equation (9) that the optimal number of panels is given by N⋆
i = min

[
N̄i,−

( ∂µij
∂Ni

+γ1N

2γ2N

)]
.

We estimate γ2N = −9.6 and increasing the per-panel subsidy by $1000 increases
∂µij

∂Ni
by 1.

51Differentiating equation (10) yields ∂ log(πi)

∂µij(N⋆
i )

= 1
σ (1− πi). The average value of πi in our dataset is about

0.02.
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(a) Monetary Benefit (b) Education

(c) Percent Democrat (d) Border Discontinuities

Figure 4: Panels (a), (b), and (c) show local nonparametric fit of tract-level log installation per household in
the data (red dotted line) and simulations (solid blue line) on (a) the total monetary benefit of installing 15
solar panels, (b) the percent of households with a college degree, and (c) the percent of households who are
democrats. Panel (d) plots estimated location-bin fixed effects from a regression of log panels per household
on state tax rates and location-bin and state-border fixed effects. Positive (negative) values on the X-axis
represent households on the side of the border with more (less) generous subsidies. The dots represent
estimates of location-bin fixed effects from the data (blue dots) and the simulations (red hollow dots).

5.1.2 Model Fit (Installations)

Figure 4 assesses model fit with regard to solar installations. Figure 4a shows the relationship

between tract-level log installations per household and the monetary benefits of installation

in the data and simulation. We calculate the lifetime monetary benefits of installation as

the net present value of installing a 15-panel array in each census tract. We can see that in

both the data and simulations, installations are strongly increasing in monetary incentives.52

Subfigures 4b and 4c show the relationship between installations and the percentage of house-

holds with a college education, and the percentage of households who voted democrat in the

2016 election. In both simulations and the data, installations are increasing in educational

attainment and democrat percentage. The fit is quite good in both dimensions.

Subfigure 4d examines how log panels per household change as we cross state borders.

We first divide households into 10-mile-wide bins in location relative to the border using the

procedure described in Section 4.2. We then regress tract-level log panels per household on

location-bin fixed effects, controlling for border fixed effects and state tax rates. Finally, we

52The slight decrease in installation rates for the highest monetary values in the data reflects that Mas-
sachusetts and New Jersey have very generous subsidies and high electricity prices, but installation rates are
lower than in states such as California and Arizona, which have less generous subsidies.
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plot the estimated distance-bin fixed effects for both the data (blue dots) and our simulated

model (red dots). Positive values on the X-axis represent households on the side of the border

with more generous subsidies, and negative values on the X-axis indicate the side with less

generous subsidies. Both data series show a similar “jump” as we move from the side of the

border with less generous benefits to the side with more generous benefits.

5.1.3 Comparison to Existing Estimates

Gillingham and Tsvetanov (2019) estimate the price elasticity of demand for solar panel

installations using an approach that accounts for excess zeroes, unobserved heterogeneity,

and the endogeneity of installation prices. Their estimates imply a price elasticity of demand

evaluated at the mean installation price equal to -0.65. We simulate a marginal increase in

installation prices and calculate the implied price elasticity evaluated at the mean installation

price. This yields an estimate of -0.70, close to the elasticity estimated by Gillingham and

Tsvetanov (2019).

Crago and Chernyakhovskiy (2017) analyze the effects of policy incentives on residential

solar panel installations using county-level panel data from 12 states in the US Northeast.

They find that increasing rebates by $1 per watt increases solar panel installations by 47%.

We replicate this experiment using our structural model and find that increasing rebates by

$1 per watt in the same 12 states increases installations by 33%, of a similar magnitude to

the estimates in Crago and Chernyakhovskiy (2017).53

Hughes and Podolefsky (2015) estimate the effects of subsidies on solar panel installations

by examining the introduction of a solar rebate in California. In their preferred estimate,

they find that a $470 increase in total rebate leads to a 10% increase in installations. From

our estimates above, we can see that a $470 increase in subsidies would lead to approximately

a .47 × 1
σ
≈ 4 percent increase in the number of installations. Thus, our result is smaller

than the estimate in Hughes and Podolefsky (2015) but of a similar magnitude.

5.2 Power Plants

We now evaluate the performance of the power plant portion of the model. We include ad-

ditional model fit results for power plants in Online Appendix C.4, including out-of-sample

predictions using 2020 data. Figure 5 shows predicted electricity production of dispatchable

plants against actual electricity production. Each dot represents an hour of aggregate pro-

duction by dispatchable plants for each interconnection in the data (X-axis) and predicted by

53Specifically, we increase the per-panel subsidy, sPanelj , in these same 12 states. We convert the per-watt
subsidy into a per-panel subsidy by assuming 250 watts per panel.
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Figure 5: Model fit at the interconnection level. The Y-axis gives the production of dispatchable plants
predicted by the model, measured in GWh while the X-axis gives the production in the data. Dots represent
an hour of production for each interconnection, smoothed lines show the fit of a generalized additive model.

the model (Y-axis). The model fits well in all three interconnections, producing R-squared

values of 0.99, 0.96, and 0.96 in the East, West, and Texas, respectively.

We assess fit over hours and seasons in Figure 6. Each panel shows predicted and actual

production of dispatchable plants for the average day for each of the three interconnections

across four seasons. This figure shows that the model matches daily peaks and troughs of

production in response to changes in demand and differences in intraday timing of those

peaks and troughs between seasons. In particular, our model is able to generate the pattern

of increasing dispatchable production through the afternoon, the time where solar power

generation decreases and electricity demand increases. This is especially true for seasons and

interconnections when solar makes up a larger share of electricity production. A region-level

breakdown of these plots is available in Online Appendix C.4.

Not only does the model match total production, but it also replicates changes in the

fuel mix at varying demand levels, reflecting that plants differ in how balancing authorities

dispatch them as a function of excess demand. Figure 7 shows the percentage of total produc-

tion in each interconnection produced by plants of each fuel type in the model and the data.

The X-axis of each panel varies the interconnection-level excess load—the total amount of

electricity demand that must be satisfied by dispatchable plants. Across all interconnections,

our model’s predictions match the observed fuel mix very well. In all interconnections in the

model and data, natural gas as a share of production increases in excess load. Meanwhile,

production levels of clean, low-marginal-cost nuclear and hydroelectric plants generally de-

crease as a percentage of total production. An important difference between the Eastern and

Western Interconnections is that coal increases its share of production in the East, whereas

coal’s production share declines except at the lowest levels of excess load in the West.
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Figure 6: Model fit at the interconnection level by hour and season. Hour reflects Eastern Standard Time
(EST). Each panel shows predicted and actual production of dispatchable plants over the course of the
average day, for each of the three intersections and across four seasons. The green solid line gives electricity
production in the data while the red dotted line gives predicted production.

Figure 7: Fuel mix of production by interconnection. The X-axis gives excess load at the interconnection
level and the Y-axis gives the percent of electricity production that is produced by each of the fuel types.
The dashed lines show the fuel mix in the data while the solid lines show the simulated fuel mix.
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Figure 8: Estimated marginal damage of electricity production by region. The X-axis of each panel varies the
total excess load in each of the three interconnections, and the Y-axis gives the simulated marginal damages
per MWh of electricity produced in each region. See text for additional details.

These changes in the fuel mix imply that the marginal damages of electricity production

may vary not only spatially but also as a function of electricity demand. To illustrate this,

Figure 8 plots simulated marginal damages of energy production in each region within each

interconnection as a function of excess load.54 Overall, marginal damages are highest in

regions within the Eastern interconnection, reflecting, in part, the interconnection’s reliance

on production from coal-fired power plants. However, there is significant heterogeneity in the

marginal damages across regions within this interconnection. Marginal damages are highest

from power plants the RFC region, which spans much of the Mid-Atlantic and lower Great

Lakes.55 Regions also vary in the extent to which their marginal damages of production

change in excess load. In the Western and Texas interconnections, marginal damages are

relatively flat as a function of excess load while marginal damages in several regions in the

Eastern interconnection are strongly increasing in excess load. For example, in the NPCC,

the region covering the Northeast, marginal damages increase by nearly 30% between the

25th to 75th percentile of excess load, going from $33/MWh to $43/MWh.

54To calculate this, we simulate increasing excess load by a small amount in the region in question. We
then divide the resulting change in total damages associated with power plants in the region by the change
in total production by these power plants. Note that this is the marginal damage with respect to electricity
production within a given region, not electricity demand from a given region. To the extent that a region
imports electricity from other dirtier or cleaner regions, the marginal damage of electricity demanded may be
higher or lower. For example, the NPCC imports electricity from the relatively dirty RFC, making marginal
damage of electricity demand in NPCC higher than the electricity produced there.

55We include a map of NERC regions in Online Appendix A.7.
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(1) (2) (3) (4) (5)

State-Specific Subsidies Tract-Specific Subsidies

Baseline Welfare Max Damage Min Welfare Max Damage Min

I. Average Subsidy ($Thousands)

Midwest 11.3 15.8 16.8 15.7 16.6

Northeast 18.2 17.5 22.2 17.4 21.9

South 10.4 14.3 11.8 14.3 11.7

West 12.0 11.9 3.7 12.0 3.7

II. Installations per 1000HHs

Midwest 4.9 6.6 8.1 6.6 8.3

Northeast 18.8 13.8 19.8 13.8 19.5

South 7.1 9.4 8.3 9.4 8.3

West 11.9 11.8 6.4 11.9 6.4

National 9.7 10.2 9.4 10.2 9.4

III. Annual Damages Offset ($Millions)

CO2e 58.3 61.3 59.1 61.3 59.0

NOx 14.9 15.5 14.8 15.5 14.8

PM2.5 13.0 13.0 14.1 13.0 14.0

SO2 29.0 30.5 38.2 30.6 38.9

Total 115.2 120.3 126.2 120.4 126.7

Table 3: Panel I shows the average present discounted value of subsidies received for a 15-panel installation
for each census region. Panel II gives the simulated number of solar installations per 1000 households in the
model for each Census region. Panel III gives the total damages offset by rooftop solar. See text for details
on each simulation.

6 Counterfactuals and Optimal Subsidies

6.1 Welfare-Maximizing Subsidies

We now use the estimated structural model to quantify the welfare-maximizing solar subsidies

characterized by equation (8).56 The results are displayed in Figure 9 and in Table A5 and

Table 3. In all tables, “Baseline” refers to simulated outcomes under the current system of

subsidies.

Figure 9a and the first panel of Table 3 show how total subsidy generosity varies across

states under the optimal system of subsidies.57 We measure subsidy generosity as the present

discounted value of subsidies an average household in each state would receive if they installed

a 15-panel system. Washington and Oregon, two states with relatively little sunlight and en-

vironmentally friendly power plants, have the lowest optimal subsidies, at under 11 thousand

dollars in present value. On the other end of the spectrum, six states in the RFC region

56We outline the algorithm we use to numerically solve for welfare-maximizing subsidies in Online Appendix
B.4.

57In Online Appendix C.5, we show how the government should optimally allocate subsidies across the
three subsidy types: cost-based subsidies, per-panel subsidies, and production-based (per-kWh) subsidies.
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(a) Optimal subsidies. (b) Baseline installations as a percent of optimal.

Figure 9: State-level optimal subsidies and misallocation for welfare-maximizing reforms. Panel (a) gives the
optimal state subsidies. Subsidies are measured as the present discounted value associated with a 15-panel
installation, averaged across all households in the state. Panel B shows state-level installations under the
current system as a percentage of installations under the optimal system. These results are shown in table
form in Online Appendix C.7.

have optimal subsidies valued at over 18 thousand dollars.58 In West Virginia, one of these

six states, current subsidy levels are some of the least generous in the country at under 6

thousand dollars. More generally, optimal subsidies are highest in the Mid-Atlantic and lower

Great Lakes and are lowest in the Northwest.

Figure 9b and the second panel of Table 3 quantify the misallocation caused by the

current system of subsidies on the spatial distribution of solar panel installations.59 Current

installations in the Midwest and South are roughly 25% lower than under optimal subsidies,

while installations in the Northeast are 35% higher than the optimal level. Pennsylvania,

for example, has only 40% of the optimal number of installations, while Massachusetts, New

Jersey, and Washington all have over 190% as many installations as optimal. These results

suggest that the current system of subsidies leads to a substantial misallocation of solar

panels across states.

Panel III of Table 3 summarizes the environmental cost of this misallocation. Switching

from the current subsidy scheme to the optimal scheme would increase annual damages

offset by rooftop solar from $115.2 million to $120.3 million, equal to a 4.5% increase in the

aggregate environmental benefits of solar panels.60 A decrease in CO2 equivalent emissions

58These six states are Delaware, Maryland, New Jersey, Indiana, West Virginia, and Pennsylvania.
59We find that almost all of the adjustment comes via the extensive margin, rather than the intensive

margin (number of panels per installation). In Online Appendix C.6, we show how the average installation
size changes across counterfactuals.

60These environmental benefits are considerably smaller than the environmental benefits of reallocating
panels found in Sexton et al. (2021). There are two main reasons for this difference. First, we consider a
government with much more limited policy instruments. Sexton et al. (2021) consider a planner who can
directly allocate panels across states subject to local capacity constraints. Here we consider a government
which can only influence installations through subsidies. Second, we utilize emissions data from 2019 rather
than data from 2007-2016. Holland et al. (2020) find that power plant emissions decreased dramatically
between 2010 and 2017. This decline was especially large in the Eastern interconnection, where emissions
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(a) Optimal subsidies (b) Baseline installations as a percent of optimal.

Figure 10: State-level optimal subsidies and misallocation for damage-minimizing reforms. Panel (a) gives
the optimal state subsidies. Subsidies are measured as the present discounted value associated with a 15-
panel installation, averaged across all households in the state. The color scale censors subsidy levels below
$7K and above $22K. Panel B shows state-level installations under the current system as a percentage of
installations under the optimal system. These results are shown in table form in Online Appendix C.7.

drives most of the environmental gains, with relatively minor effects on damages from other

pollutants.

6.2 Damage-Minimizing Reforms

An alternative social objective is to choose the system of subsidies that minimizes environ-

mental damages. In this section, we consider a government who chooses subsidies to minimize

the net present value of environmental damages, D (ELoad) , subject to the government bud-

get constraint. We formalize the government’s problem and present the first-order conditions

in Online Appendix B.5.

Figure 10 and the third columns of Tables A5 and Table 3 show the results. Like the

welfare-maximizing policies, the damage-minimizing policies are most generous in the Mid-

Atlantic, and are least generous in the Northwest. However, the variation across states in

subsidy generosity is greater than under the welfare-maximizing subsidies: optimal damage-

minimizing subsidies range from small negative values in Washington and Oregon to over

25 thousand dollars in Maryland and Delaware. The reallocation of solar panels induced by

the damage-minimizing subsidies would lead to approximately a 10% increase in aggregate

environmental benefits.

6.3 Tract-level Subsidies

In the results above, we found that optimally set state-level subsidies lead to large envi-

ronmental benefits relative to the current system of subsidies. Could subsidies set at a

are historically higher than in the Western interconnection. This decrease in variation of damages across
locations lowered the environmental benefits of reallocating panels across space.
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more granular geographic level lead to even larger gains? To answer this, we solve for the

welfare-maximizing and damages-minimizing subsidies when subsidy levels are allowed to

vary nonparametrically across census tracts.61

Columns (4) and (5) of Table 3 display the results. In both the welfare-maximizing and

damage-minimizing cases, the average subsidies across regions and the distribution of in-

stallations with optimal tract-level subsidies are similar to those under optimal state-level

subsidies, and the damages offset with optimal tract-specific subsidies are only slightly larger

than those with optimal state-specific subsidies. We conclude that the optimal system of

state-level subsidies can capture nearly all of the gains of more geographically granular sub-

sidies.

6.4 Unconstrained Reforms

Our previous counterfactuals have focused on budget-neutral reforms. Here we analyze the

case where the government does not face an externally set budget constraint and maximizes

utility less environmental damages and government cost.62 In this case, the government’s

problem is to maximize ∫
i

Vidi︸ ︷︷ ︸
Utility

−D (ELoad)︸ ︷︷ ︸
Damages

−
∑
j

∫
i∈Ij

sijm
⋆
i di︸ ︷︷ ︸

Government Cost

. (14)

We present the first-order conditions of the government’s problem in Online Appendix C.8.

The results are summarized in Table 4. The first two columns show baseline and un-

constrained optimal subsidies when we use a social cost of carbon of 51 dollars per ton of

CO2. Optimal subsidies are substantially lower than current subsidy levels, ranging from

roughly 25% to 48% of current subsidy levels across regions. Table A9 in Online Appendix

C.8 shows the state-level optimal subsides. Current subsidies exceed the optimal levels in

all but three states: West Virginia, Pennsylvania, and Maine. These less generous subsidies

result in significantly fewer installations, with Panel II showing that installations under the

optimal subsidies are roughly half of current levels nationally.

Panels III and IV show the annual environmental benefits of rooftop solar and the annu-

itized total fiscal cost of subsidies. Switching to unconstrained optimal subsidies decreases

61Ai is constant within census tracts in our quantitative model, and therefore solar production within
census tract is simply proportional the number of panels installed. Thus, there is no unique optimal system
of subsidies when the planner can use both panel-based and production-based subsidies. Therefore, we set
per-panel subsidies to 0 in this exercise.

62For simplicity, we assume the marginal cost of public funds is equal to 1 such that the government weights
fiscal costs and household utility equally. See Jacobs (2018) for a discussion.
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(1) (2) (3) (4)

SCC=51 SCC=185

Unconstrained Unconstrained

Baseline Optimal Baseline Optimal

I. Average Subsidy ($Thousands)

Midwest 11.3 5.4 11.3 11.5

Northeast 18.2 6.5 18.2 13.6

South 10.4 4.5 10.4 10.9

West 12.0 3.0 12.0 8.2

II. Installations per 1000HHs

Midwest 4.9 2.9 4.9 4.7

Northeast 18.8 5.8 18.8 10.3

South 7.1 4.3 7.1 7.1

West 11.9 5.9 11.9 8.9

National 9.7 4.7 9.7 7.6

III. Annual Damages Offset ($Millions)

Total 115.2 54.1 268.3 209.9

IV. Annuitized Total Fiscal Cost ($Millions)

National 378.4 54.1 378.4 209.7

Table 4: Unconstrained Optimal Subsidies. The first panel shows the average present discounted value of
subsidies received for a 15-panel installation. for each census region. The second panel gives the simulated
number of solar installations per 1000 households. The third panel gives the annual environmental benefits
generated by residential solar panels. The final panel gives the total fiscal cost of subsidies converted into an
annuity value.

environmental benefits by 61 million dollars annually. However, the accompanying 324 mil-

lion dollar decrease in fiscal costs dwarfs this decrease in environmental benefits. The optimal

subsidy scheme achieves half of the environmental benefits at one-seventh the current cost.

Column 4 of Table 4 recalculates the unconstrained optimal subsidies with a higher social

cost of carbon, equal to 185 dollars per ton of CO2, based on the mean estimate from Rennert

et al. (2022).63 Increasing the social cost of carbon increases the external benefit of additional

installations. Thus, optimal subsidy levels and their resulting installation rates are closer to

current levels. However, total spending on optimal subsidies is still less than 60% of current

spending. In this case, the optimal subsidies generate 78% of the environmental benefits of

the current subsidies at 55% of the current fiscal cost.

It is important to caveat that residential solar subsidies may be associated with addi-

tional external benefits not modeled here, such as encouraging further technological growth.

However, our results suggest that these additional benefits would have to be quite large to

justify the current spending levels on these subsidies.

63Rennert et al. (2022) report estimates in 2020 US Dollars. We convert this to 2014 dollars for consistency
with the rest of our analysis.
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Figure 11: Damages offset per additional dollar of government funds associated with marginal increases in
production-based subsidies, skWh

j , around the current system of subsidies.

6.5 Marginal Subsidy Increases

Relative to the current system of subsidies, what marginal subsidy increases are the most

cost-effective way to decrease damages? To answer this, we calculate the damages offset per

additional dollar of government cost associated with marginal subsidy increases around the

current system of subsidies. Specifically, we first simulate the model 1) under the current

system of subsidies and 2) with marginally more generous subsidies of a given type in a given

state. We calculate the damages offset per dollar of this particular subsidy as the difference in

damages between the two simulations divided by the difference in the fiscal cost. We repeat

this process for each subsidy type in each state.

Figure 11 shows the marginal damages offset per dollar for production-based subsidies.64

There are large differences in damages offset across states. For example, a small subsidy

increase in Washington only leads to roughly 7 cents less environmental damages per dollar

of government funds. On the other hand, subsidy increases in West Virginia are highly cost-

effective—for an additional dollar of government spending, environmental damages decrease

by 37 cents. Subsidy increases in Ohio, Maine, Delaware, and Pennsylvania are also associated

with damages offset per dollar of over 30 cents. These results imply that small, cost-neutral

shifts in subsidies across states could lead to substantial decreases in environmental damages.

For example, a cost-neutral shift from subsidies in Washington to subsidies in West Virginia

would lead to decreases in environmental damages of roughly 37−7 = 30 cents for each dollar

reallocated. Put another way: if the goal of Washington policymakers were to reduce total

environmental damages, they would be significantly better off subsidizing solar installations

in West Virginia, rather than in Washington.

64Within each state, there are only small differences in the damages offset per dollar across the three
subsidy types.
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7 Extensions, Robustness and Further Issues

7.1 Alternative Specifications of Household Utility

In our baseline specification, we specified γi (·), the function which dictates a household’s

nonpecuniary benefits of solar installation, as a function of the number of panels installed

and the local average education level and political leaning. In Online Appendix D.1, we as-

sess the sensitivity of our main results to this specification of the utility function by changing

the specification of γi (·). In each specification, we re-estimate the model given the alterna-

tive specification of utility and then solve for the optimal cost-neutral policy given the new

estimates of the household utility function. Across all specifications, we find similar optimal

subsidies, similar changes in installation rates, and similar environmental benefits.

7.2 Line Losses

Our baseline model does not account for line loss: the electricity that is lost as electricity is

transmitted over the grid from a power plant to a consumer. Rooftop solar reduces line loss

by reducing the amount of electricity that needs to be transported across the grid.

In Online Appendix D.2, we re-calculate our main results in a model which accounts for

line loss, where we base our model of line loss on the model and estimates from Borenstein and

Bushnell (2022). In the extension, line losses are determined endogenously as a function of

the amount of electricity in each region that must be transmitted between central generation

plants and households. Therefore, residential solar offsets damages not only by directly

producing power that would otherwise be produced by fossil-fuel plants, but also by reducing

transmission across the grid and the resulting line losses.

The takeaways are qualitatively the same as our main results. As expected, the envi-

ronmental benefits of solar panels increase. As a result, the optimal unconstrained subsidies

are slightly more generous than in the baseline case but still far less generous than current

policies. Optimal unconstrained government spending on subsidies is less than one-sixth

of current spending. The welfare-maximizing and damage-minimizing cost-neutral reforms

generate increases in aggregate environmental benefits of 4.5% and 9.4%, respectively.

7.3 Improved Storage of Nondispatchable Technology

A significant issue facing the expansion of renewable electricity generation is that solar and

wind are nondispatchable. Thus, these sources can only produce electricity when environ-

mental conditions are suitable—when the sun is shining, or the wind is blowing. One of

the leading solutions to this problem is an expanded capacity of electricity storage in the
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form of batteries. In Online Appendix D.3, we consider a stylized way to incorporate storage

technology into our model. We allow nondispatchable electricity to be stored and used pro-

portionately to the total load. Effectively this means we reallocate solar and wind production

from their exogenous time profile of production to match the time profile of demand, which

loosely matches the optimal behavior of storage owners arbitraging electricity across time

to maximize profits. Adding storage technology does not qualitatively change the optimal

cost-neutral or unconstrained reforms, the distribution of installations under the optimal

subsidies, nor the environmental benefits of switching to optimal subsidies. However, the

storage technology itself generates considerable environmental benefits. See Butters, Dorsey,

and Gowrisankaran (2021) or Holland, Mansur, and Yates (2022) for a detailed treatment of

storage technology.

7.4 Cleaner Electricity Production

Electricity production in the United States has become considerably cleaner over the past

few decades. Our baseline results quantify the value of optimizing solar panel subsidies given

current electricity production technology. Here, we are interested in determining what would

happen to our main results if the grid were considerably cleaner than it is presently.

Increased production of utility-scale renewables and fuel switching (from dirty to clean

coal and from coal to natural gas) are the two primary drivers of the reduction in emissions

from electricity generation. We perform four additional simulations to assess how further

clean-up of electricity production would affect our results. First, we find the optimal subsidies

under expanded production from utility-scale solar and wind based on three scenarios of

projected renewable expansion by 2030 from the EIA (Nalley and LaRose, 2022). Second,

we recalculate results considering each coal plant to have “cleaned up” production. Our

method of cleaning up coal plants is to adjust marginal damages from coal plants so that the

mean and standard deviation of marginal damages from coal plants match that of natural

gas plants.

We present the results in Online Appendix D.4. We find that the damages offset by solar

panels decrease with cleaner production. This lowers the optimal unconstrained subsidies for

residential solar, suggesting optimal unconstrained subsidies will be even lower in the future

if electricity production continues to become cleaner. We still find substantial benefits of

switching from the current subsidies to optimal cost-neutral subsidies.Across all simulations,

we find that switching to the optimal cost-neutral subsidies would lead to increases in damages

offset of 3.0% to 7.8%.
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7.5 Distributional Effects

The proposed switch in the system of subsidies could have distributional impacts through

two channels—directly through a change in subsidies received by households and indirectly

through the induced change in pollutant damages caused by electricity generation. House-

holds who install solar panels, and therefore receive subsidies, tend to be wealthy (Borenstein

and Davis, 2016). Our proposed optimal subsidies will likely be progressive relative to the

current subsidies since switching from current to optimal generally involves decreasing sub-

sidies in high-income states such as Massachusetts and increasing subsidies in low-income

states such as West Virginia. For this same reason, switching to optimal subsidies will likely

improve the distribution of damages caused by electricity generation. Similarly, Dauwal-

ter and Harris (2023) find that shifting solar capacity to locations where the environmental

benefits are greatest would lead to environmental benefits for disadvantaged groups.

We have refrained from accounting for distributional effects when calculating optimal

subsidies, as this paper is primarily concerned with the spatial misallocation of solar due

to differences in the generosity of solar subsidies across states. Seriously tackling the dis-

tributional effects of solar subsidies requires a different set of policy instruments than those

analyzed here, such as means-tested subsidies for solar installations.

8 Conclusion

We have used a structural model of solar panel demand and electricity production to calculate

the optimal system of subsidies for residential solar panels and to quantify the benefits of

switching to such a system. Our main conclusions are that the current system of subsidies

leads to a spatial misallocation of panels, and subsidy levels are far too generous in general.

However, our results do not necessarily imply that the US should lower funding for renewable

energy programs in general, rather that government funds spent on subsidies for residential

solar subsidies would be better spent on other programs. These alternative programs could

include other investments in renewable energy, such as subsidies for utility-scale solar or wind

power, both which provide energy at lower cost than residential solar (Lazard, 2023).

Future work can extend our model to incorporate endogenous entry and exit of electricity

generators, as in Holland, Mansur, and Yates (2022). In that case, residential solar subsidies

could disincentivize entry of new generators, which could be costly from an environmental

perspective if the new generators employ cleaner technology than incumbents. It would also

be interesting to utilize similar frameworks to analyze other consumer subsidies for energy-

related products, such as subsidies for home insulation, small wind systems, and geothermal

heat pumps. We leave these questions for future work.
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Figure A1: Daily solar radiation
(
kWh/m2/day

)
by census tract from Deepsolar.

A Data Appendix: For Online Publication

A.1 Deep Solar

We obtain data on solar panel installation from the Deepsolar database, which is created by

applying a novel semi-supervised deep-learning framework to satellite imagery from Google

Static Maps from the year 2016 (Yu et al., 2018). The Deepsolar model predicts the number

and size of solar panel installations across the contiguous United States. We use these tract-

level data on the number and size of residential solar systems to give us our empirical analogs

of BIt and installation size Ni.

Deepsolar also estimates the daily solar radiation in each census tract, measured in kWh

per square meter per day, which we show in Figure A1. For any missing tracts in the

Deepsolar data, we impute daily solar radiation by taking the simple mean of any bordering

tract with non-missing values.

A.2 Google Project Sunroof

For data on solar irradiance, Ai, and number of available spaces for panels N̄i, we utilize

tract-level data from Google Project Sunroof (GPS). GPS begins with satellite imagery from

Google Maps. It then applies a deep-learning algorithm to create 3D models of rooftops.

These 3D models allow GPS to estimate the amount of sunlight a given rooftop receives over

the course of the year, taking into account changes in the position of the sun over the course

of the day and year. These 3D models are used to calculate the amount of available space

for solar panels.

We assume that all households within a given tract have access to the same solar irra-

diance, which we measure as total solar energy generation potential for the average panel
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in a given tract. For number of potential panels N̄i, the GPS data provide then number of

buildings in each tract with differing amounts of space available for solar panel installations.

This effectively gives us the full distribution of N̄i for households within a given tract.

One potential issue with the GPS data is that it might also capture potential space for

solar panels that is not suitable for residential solar (for example not being part of someone’s

house). To deal with this, we limit potential solar sites in Google Project Sunroof to those

with space available to 42 MW of solar panels, corresponding to the 99.9th percentile of the

largest solar panel in the Tracking the Sun data described in Online Appendix A.3. The

results are not sensitive to this censoring.

A.3 Tracking the Sun

Tracking the Sun is an aggregation of solar system installation data created by the Lawrence

Berkeley National Lab. The Lawrence Berkeley National Lab collects these data from existing

public databases and directly from state agencies, utilities, and other organizations. The

result is 2.5 million solar installations from the last two decades, with installation price,

system size, and subsidies geographically identified at the zip code level, along with other

information about the installed solar system. The installations cover nearly 80 percent of all

installed solar systems in the U.S. but include only 25 states. Some of these states do not

include price data for any installations. Across all states, about a quarter of observations for

residential solar system installations are missing price data.

We use the Tracking the Sun data to estimate prices for solar systems, using total cost

and number of panels installed to estimate a fixed cost of installation and variable, per-panel

cost. Since many states have no data, we assume pricing functions are common within each

census region. We filter the Tracking the Sun data to include residential installations between

2000 and 2020 that are not missing price or the total number of panels, which leaves us with

nearly 1.3 million observations. Additionally, we censor installation costs at the 0.5th and

99.5th percentiles and convert them into 2019 dollars.

A.4 System Advisor Model

While we obtain annual electricity generation for solar panels from Google Project Sunroof,

those data do not include any information on how that production varies by hour within a

year. Thus, we use the System Advisor Model (SAM) from the National Renewable Energy

Laboratory to estimate hourly electricity profiles for each state (Blair, Dobos, and Gilman,

2013). SAM is an open-source program that estimates the performance of solar systems

and other renewable power systems. We follow the methodology in (Sexton et al., 2021),
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Figure A2: Hourly electricity generation for a standard solar panel for six example states.

calculating electricity generation for a system with typical parameters where tilt matches

latitude and panels point south. The only difference is that we estimate generation for

systems at the centroid of each state. We use weather data from Sengupta et al. (2018) for

a state’s typical meteorological year.

The model’s output is the hourly production of a solar system over the course of a year in

each state. We create hourly profiles by dividing the hourly generation by each state’s total

annual generation. Figure A2 for hourly production for examples of the results for six states.

A.5 State Electricity Prices

Figure A3 presents the state-level electricity prices we use in our empirical analysis. California

and states in the Northeast have the highest electricity prices at over 15 cents per kWh. Most

of the country has prices between 8 and 10 cents per kWh.

A.6 Subsidies

We calculate skWh
j as the sum of per-kWh rebates and the average price of Solar Renewable

Energy Certificates. In some states (e.g. Massachusetts and New Jersey), households can

only sell Solar Renewable Energy Certificates for a certain number of years after installation.

For these states, we only calculate the value of Solar Renewable Energy Certificates for years

in which households are permitted to sell the credits. We calculate sCost
j as the sum of
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Figure A3: State electricity prices ($/kWh)

(a) Panel-based subsidies (b) Cost-based subsidies (c) kWh-based subsidies

Figure A4: Expected subsidy for a 15-panel system by subsidy type

federal investment tax credits, state investment tax credits, sales tax exemptions, and the

net present value of property tax exemptions. We translate per-KW rebates to sPanelj by

assuming a constant 0.25 KW per panel. Maryland has a fixed rebate of $1000 per system.

We translate this into a per-panel subsidy by dividing this amount by the average number

of panels in an installation (15). Many states place a cap on the maximum amount of a

type of subsidy a household can receive. We enforce these state-level maxima in estimation.

Figure A4 shows the state level expected subsidies for a 15-panel system for each type of

subsidy: per-panel, cost, and kWh. Most of the current subsidies take the form of cost-based

subsidies, while few states offer kWh and panel-based subsides.

A.7 Power Plants

The following describes how we use the Open Grid Emissions (OGE) data. These data have

several advantages over the commonly used raw electricity data from the EIA and EPA,

which we describe below.

Plant level The hourly, plant-level data from OGE give net electricity generation and

emissions of SO2, NOx, CO2, and CO2 equivalent. OGE derives these data primarily from
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the EPA CAMD, which reports hourly gross electricity generation and emissions at the unit

level, where units typically correspond to generators connected to a single emissions stack.

OGE adjusts gross generation to account for electricity losses before entering the grid and

aggregates these units to the facility level, which we refer to as power plants. Additionally,

OGE removes the portion of emissions from fuel burned for heat for combined heat and

power plants. OGE’s static plant attributes table has a latitude and longitude for each

plant, allowing us to match each power plant to a county.

We also collect each plant’s nameplate capacity and stack height. Nameplate capacities

are from EIA Form 860 and represent the maximum amount of electricity that a generating

unit is rated to produce. We sum the nameplate capacities of generators in a plant to

calculate plant-level nameplate capacities. Thirty-seven plants are missing from the EIA

860 data, for which we use nameplate capacities from the EPA’s eGRID files from 2019 and

2020. We obtain stack heights from the EPA CAMD and set a plant’s stack height as the

median stack height of units the within that plant. Thirty plants are missing from these

data, for which we set the stack height equal to the median stack height of all plants of the

same primary fuel category. We use a power plant’s stack height and location to assign the

marginal damage coefficient in the AP3 model. We opt for CO2e over CO2 when calculating

damages as it includes emissions of the more potent greenhouse gasses methane and nitrous

oxide in addition to CO2.65

The EPA CAMD hourly unit-level data only include fossil-fuel plants with greater than

25 MW of generating capacity, leaving a non-negligible portion of generation and emissions

unreported. One of the main goals of OGE is to ensure complete coverage of the electricity

generation sector. In essence, they combine the reported hourly plant-level data from the EPA

CAMD with hourly balancing authority-fuel category level data from the EIA to calculate a

‘residual’ profile, the unreported production from small or non-fossil-fuel power plants.

There are 9,514 plants with hourly production and emissions in the OGE data. About a

third of the plants do not have observations for every hour in 2019. We fill in any generation

and emissions values between the first and the last hour a plant appears in the data with

zeros. After removing 4,388 non-dispatchable plants (wind and solar), 471 plants with zero or

negative reported net electricity generation, and 30 plants with no variation in net electricity

generation, we have 4,625 power plants—giving us 40.1 million plant-hour observations.

Emissions rates OGE’s hourly data does not include PM2.5 emissions, as the EPA CAMD

and the EIA do not report PM2.5 emissions from power plants. As a part of the eGRID

65As detailed in the OGE documentation, they calculate CO2e using the global warming potential of each
GHG according to the IPCC’s 5th Assessment Report. They calculate methane and nitrous oxide emissions
using a constant, fuel-specific emissions factor.
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Figure A5: Map of region service areas

project, the EPA has collected annual PM2.5 emissions from the National Emissions In-

ventory (NEI) and matched those emissions to electricity-generating units to calculate an

average PM2.5 emissions rate. We match these estimated annual rates to our power plants,

taking the production-weighted average over units within a power plant. We use the fuel

category median value for the power plants missing PM2.5 emissions rates. This imputation

only applies to 10% of total electricity production. Additionally, we censor PM 2.5 emissions

rates at the 95th percentile for each fuel category.

Regions We follow Holland et al. (2016) in our definitions of regions for the electricity

generation model. OGE assigns plants to the balancing authority in charge of dispatching

the plant. We then assign balancing authorities to regions. There are six NERC regions

in the contiguous US. Four of these (MRO, RFC, NPCC, and SERC) fall within the East-

ern Interconnection, while the other two (WECC and TRE) are in the Western and Texas

Interconnections, respectively.

Most BAs fall entirely within one NERC region, but some BAs have generating units in

multiple NERC regions. For all BAs except MISO and PJM, we assign the BA to the NERC

region with the most overlapping generating units between the BA and NERC region using

the static plant attributes data from OGE. We assign the MISO BA to the MRO NERC

region and the PJM BA to the RFC NERC region. Finally, we give California its own NERC

region, consisting of five BAs: BANC, CISO, IID, LDWP, and TIDC. Figure A5 shows a

map of these regions. We used the eGRID power profiler to assign approximate service areas

for each region.

Table A1 shows summary statistics describing generation and average emissions in each

region, highlighting the heterogeneity in average emissions between regions. This is largely

driven by differences in the fuel mix between regions. Table A2 shows a summary of genera-
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Table A1: Summary statistics on dispatchable power plants by region

Net Generation Emissions (lb/MWh)

Region Number of plants Total (TWH) % Fossil Fuel NOx SO2 CO2e

CAL 639 1,611 58.8 0.67 0.07 670

MRO 1,182 8,006 79.6 0.99 1.10 1,356

NPCC 723 2,250 45.8 0.42 0.06 550

RFC 657 7,714 61.5 0.57 0.68 900

SERC 582 9,167 67.0 0.51 0.36 893

TRE 179 3,273 87.0 0.66 0.71 1,095

WECC 663 4,639 60.7 0.79 0.44 1,056

Total 4,625 36,660 67.9 0.68 0.60 1,003

Table A2: Summary statistics on dispatchable power plants by fuel category

Emissions (lb/MWh)

Fuel Number of plants Net generation (TWH) NOx SO2 CO2e

Biomass 583 547 5.51 1.12 1,608

Coal 262 8,973 1.53 2.14 2,216

Natural Gas 1,696 15,905 0.44 0.06 934

Nuclear 60 8,074 0.00 0.00 5

Petroleum 535 26 19.04 40.59 22,506

Geothermal 60 155 0.00 0.34 136

Hydro 1,325 2,802 0.00 0.00 0

Other 38 45 0.04 0.00 98

Waste 66 133 5.89 1.34 3,747

Total 4,625 36,660 0.68 0.60 1,003

tion and emissions by fuel category.

Excess Load We calculate the excess load (total demand minus production from nondis-

patchable generating units) within each region using OGE’s power sector-level data. These

data give hourly net generation by fuel category for each balancing authority. We perform

minor data cleaning to ensure that misreporting in the underlying data does not impact our

estimates. We consider values above 1.5 times the 99th percentile for that balancing author-

ity and fuel category to be outliers. We replace outliers with the value from the previous

hour as long as the previous hour’s value is not also an outlier. If the previous hour is an

outlier, then we use the value from the same hour in the previous day as long as that is not an

outlier. If the previous hour and the previous day are outlier values, we censor to 1.5 times
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the 99th percentile.66 We then calculate the total load within a region as the sum of net

generation across all balancing authorities and fuel categories within a region. Excess load is

the total load in a region minus net generation from solar and wind, the two nondispatchable

energy sources.

B Theory and Quantitative Appendix: For Online Pub-

lication

B.1 States Without Net Metering

In the general model above, we assumed that households could sell back electricity produced

by their solar panels at price pj. This is the case if the state offers net-metering, which is

offered in all but 9 in our sample.67 In the states were net metering is not offered, states can

sell back electricity to the grid at price psalej ≤ pj. Let Ahome
i

(
Ni, {eit}Tt=0 , {Ait}Tt=0

)
give

the discounted sum of energy that is used at home, written as a function of panels installed,

electricity consumption, and the stream of solar irradiance. Let Agrid
i

(
Ni, {eit}Tt=0 , {Ait}Tt=0

)
be the discounted sum of energy that is sold back to grid, such that Ahome

i (·)+Agrid
i (·) = Ai.

We can write the budget constraint for households in states without net metering as

c+ pj
(
e−miNiA

home
i (·)

)︸ ︷︷ ︸
Cost of electricity

+mi

[(
1− sCost

j

)
pInsj (Ni)

]︸ ︷︷ ︸
Net cost of installation

=

yi +mi

NiAis
kWh
j︸ ︷︷ ︸

kWh Subsidy

+ Nis
Panel
j︸ ︷︷ ︸

Per-Panel Subsidy

+ psalej NiA
grid
i (·)︸ ︷︷ ︸

Electricity sold to grid

 . (15)

In estimating and simulating the model, we assume that the household’s optimal elec-

tricity consumption, {e⋆it}
T
t=0, is independent of the household’s installation decision. Again

letting N⋆
i represent the optimal choice of panels, we can then summarize the decision for

households in states without met metering as

Vi = max
Ni,mi∈{0,1}

+mi [µ̂ij (Ni) + γi (N
⋆
i )] ,

66This process mimics that used by the EIA when aggregating net generation by balancing authority to
the region level, see the “Net Generation” section on this page.

67Idaho, Tennessee, Texas and Alabama do not have statewide mandatory net-metering policies. Idaho does
not have state net-metering policy but each of the state’s three investor-owned utilities have a net-metering
policy. Five other states in our sample have distributed generation rules other than net-metering.
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where

µ̂ij (Ni) = NiAi

(
p̂j + skWh

j

)
−
(
1− sCost

j

)
pInsj (Ni) +Nis

Panel
j

and where p̂j = psalej

Agrid
i

(
Ni,{e⋆it}T

t=0
,{Ait}Tt=0

)
Ai

+ pj
Ahome

i

(
Ni,{e⋆it}T

t=0
,{Ait}Tt=0

)
Ai

is the average of the

purchasing and sales price of electricity, weighted by the fractions of electricity the household

uses at home and sells back to the grid at the optimum.

For data on psalej , we use the marginal cost of electricity as measured by Borenstein and

Bushnell (2022). One challenge empirically is that we do not have dissagregated data on

Agrid
i (·) or Ahome

i (·). Therefore, we assume that the amount of electricity that is sold back to

the grid is given by the reduced-form expression Agrid
i =

(
Ni, {e⋆it}

T
t=0 , {Ait}Tt=0

)
= AiCNi,

where C is a constant.

The households optimal number of panels is then given by

N⋆
i = min

[
N̄i,−

(
∂µij

∂Ni
+ γ1N

2
(
γ2N − CAi

(
pj − psalej

)))] .
where, as before,

µij (Ni) = NiAi

(
pj + skWh

j

)
−
(
1− sCost

j

)
pInsj (Ni) +Nis

Panel
j .

We calibrate C such that a household with the average number of panels sells 30% of their

electricity back to the grid.68

B.2 Maximum Likelihood Estimation of Power Plant Policy Func-

tions

Let yokt denote observed production from power plant k in time t, and let f̂k (ELoadt|ψk) =

fk (ELoadt, εkt)−εkt denote the deterministic portion of the latent variable for power plant k

in time t, written as a function the ψ0
k, ψ

1
Rk and ψ2

Rk parameters, which we collective denote

by ψk. The log-likelihood contribution of a given hour of power plant k’s production is

68https://www.seia.org/initiatives/net-metering
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logLkt

(
ELoadt|ψk, σ

2
k

)
=1 (yokt = 0)× log

(
Φ

(
f̂k (ELoadt|ψk)

σk

))
+

1 (yokt ∈ (0, ȳk))× log

(
1

σk
ϕ

(
yokt − f̂k (ELoadt|ψk)

σk

))
+

1 (yokt ≥ ȳk)× log

(
1− Φ

(
ȳk − f̂k (ELoadt|ψk)

σk

))
,

(16)

where 1 (·) represents an indicator functions which turns on if yokt is equal to a given value

or falls within a certain range, Φ is the standard normal CDF, and ϕ is the standard normal

PDF. We choose the structural parameters for each power plant k by maximizing the sum

of log likelihood contributions over all hours for that power plant. We restrict the parameter

estimates such that output is weakly increasing in excess load for each region over the range

of excess load observed in the data.

B.3 Details: Cost-Neutral Reforms

We can express the government’s constrained maximization problem as the Lagrangian

W =

∫
i

Vidi−D (ELoad)− λ

(∑
j

∫
i∈Ij

sijm
⋆
i di−G

)
, (17)

where D (ELoad) is total environmental damages, sij = sPanelj N⋆
i + s

kWh
j AiN

⋆
i + s

Cost
j pInsj (N⋆

i )

is the total subsidy paid to household i conditional on installation, and G is the maximum

amount the government can spend on subsidies.

The optimal set of subsidies must satisfy the first-order conditions of the government’s

problem. Taking the derivative ofW with respect to a given subsidy type θ ∈ {kWh,Panel,Cost}
in state j yields

∂W

∂sθj
=

∫
i

∂Vi
∂sθj

di+

∫
i

T∑
t=0

Ait

(1 + r)t

∣∣∣∣∣∂Dt

(
ELoadSB

t

)
∂ESolar

Rt

∣∣∣∣∣
(
−→mi

θN⋆
i +m⋆

i

∂Ni

∂sθj

)
di

− λ

(∫
i

−→mi
θsijdi−

∫
i

m⋆
i

∂Ni

∂sθj

∂sij
∂Ni

di−
∫
i

m⋆
i

∂sij
∂sθj

di

)
, (18)

where ELoadSB
t denotes the excess load in time t evaluated at the optimal (welfare-maximizing)

system of subsidies.
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By the envelope theorem we have ∂Vi

∂sθj
= m⋆

i
∂sij
∂sθj

, which tells us that the utility gain

for households is simply equal to the value of the increase in subsidy for non-additional

households, holding the number and size of installations constant.

Plugging this into (18) and setting the derivative equal to 0 yields

∫
i

T∑
t=0

Ait

(1 + r)t

∣∣∣∣∣∂Dt

(
ELoadSB

t

)
∂ESolar

Rt

∣∣∣∣∣
(
−→mi

θN⋆
i +m⋆

i

∂Ni

∂sθj

)
di

− λ

(∫
i

−→mi
θsijdi−

∫
i

m⋆
i

∂Ni

∂sθj

∂sij
∂Ni

di

)
− (λ− 1)

∫
i

m⋆
i

∂sij
∂sθj

di = 0, (19)

This can be rewritten as

∫
i

−→mi
θdi×


∫
i
−→mi

θ
∑T

t=0
Ait

(1+r)t

∣∣∣∣∂Dt(ELoadSB
t )

∂ESolar
Rt

∣∣∣∣N⋆
i∫

i
−→mi

θdi
− λ

∫
i
−→mi

θsijdi∫
i
−→mi

θdi

+

∫
i

∂Ni

∂sθj
×


∫
i
m⋆

i
∂Ni

∂sθj

∑T
t=0

Ait

(1+r)t

∣∣∣∣∂Dt(ELoadSB
t )

∂ESolar
Rt

∣∣∣∣∫
i
∂Ni

∂sθj

− λ

∫
i
∂Ni

∂sθj

∂sij
∂Ni∫

i
∂Ni

∂sθj

+

(1− λ)Mj

∫
i
m⋆

i
∂sij
∂sθj

di∫
i
m⋆

i di
. (20)

Finally, plugging in the definitions of
∂Mj

∂sθj
,
−−→
∆Dθ,ext

j , −→s θ,ext
j ,

∂Nj

∂sθj

∣∣∣∣∣
Mst

j

,
−−→
∆Dθ,int

j ,
−→
∂s
∂N

θ,int
j , and

∂sij
∂sθj

yields (8).

B.4 Numerical Algorithm for Calculating Optimal Subsidies

In this appendix, we outline the numerical algorithm we use to solve for the welfare-maximizing

subsidies.

1. Make a guess of the marginal cost of public funds, λ. Call this guess λ̂.

2. Make a guess of the set of subsidies. Let this matrix of all types of subsidies in all

states be denoted by ŝ.

3. Given the current guess of subsidies, ŝ, and the guess of the marginal cost of public

funds, λ̂, calculate the first-order conditions of the government’s problem for each

11



subsidy type and each state given by (8). We use analytical derivatives to evaluate

∂Mj

∂sθj
,
−−→
∆Dθ,ext

j , −→s θ,ext
j ,

∂Nj

∂sθj

∣∣∣∣∣
Mst

j

−−→
∆Dθ,int

j , and
−→
∂s
∂N

θ,int
j .

4. If all of the first-order conditions are sufficiently close to 0, move on to the next step.

If not, update the guess of the subsidies are return to Step 3.

5. Given the current guess of subsidies, calculate the total government cost.

6. If the government cost is sufficiently close to G, then the current guesses, λ̂ and ŝ, solve

the constrained maximization problem. If not, take a new guess for λ̂ and return to

Step 2.

B.5 Details: Damage-Minimizing Subsidies

The government’s problem is to choose subsidies to minimize national damages, D (ELoad),

subject to the budget constraint that the total spending on subsidies cannot exceed some

value G: ∑
j

∫
i∈Ij

sijm
⋆
i di ≤ G,

where sij = sPanelj N⋆
i + skWh

j AiN
⋆
i + sCost

j pInsj (N⋆
i ) is the total subsidy paid to household i

conditional on installation, and G is the maximum amount the government can spend on

subsidies.

We can express this constrained optimization problem as the Lagrangian

W = −D (ELoad)− λ

(∑
j

∫
i∈Ij

sijm
⋆
i di−G

)
. (21)

Taking the derivative of W with respect to sθj yields

∂W

∂sθj
=

∫
i

T∑
t=0

Ait

(1 + r)t

∣∣∣∣∣∂Dt

(
ELoadMD

t

)
∂ESolar

Rt

∣∣∣∣∣
(
−→mi

θN⋆
i +m⋆

i

∂Ni

∂sθj

)
di

− λ

(∫
i

−→mi
θsijdi−

∫
i

m⋆
i

∂Ni

∂sθj

∂sij
∂Ni

di−
∫
i

m⋆
i

∂sij
∂sθj

di

)
, (22)

where ELoadMD
t denotes the excess load in time t evaluated at the optimal (damage-minimizing)

system of subsidies.

As in Online Appendix B.3, we can again use ∂Vi

∂sθj
= m⋆

i
∂sij
∂sθj

by the envelope theorem.
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Plugging this in and using the definitions of
∂Mj

∂sθj
,
−−→
∆Dθ,ext

j , −→s θ,ext
j ,

∂Nj

∂sθj

∣∣∣∣∣
Mst

j

−−→
∆Dθ,int

j ,
−→
∂s
∂N

θ,int
j ,

and
∂sij
∂sθj

yields (23), which gives the first-order condition for each subsidy type in each state

j:

∂Mj

∂sθj
×
(−−→
∆Dθ,ext

j − λ−→s θ,ext
j

)
︸ ︷︷ ︸

Extensive Margin

+
∂Nj

∂sθj

∣∣∣∣∣
Mst

j

×

(
−−→
∆Dθ,int

j − λ

−−→
∂s

∂N
θ,int
j

)
︸ ︷︷ ︸

Intensive Margin

− λMj
∂sij
∂sθj︸ ︷︷ ︸

Mechanical Effect

= 0. (23)

These optimality conditions for a damage-minimizing planner share a similar structure to

those of the welfare-maximizing planner given by (8). The exception is how the two planners

value increases in subsidies given to non-additional households, which are represented the

third term in each of the first-order conditions (“Mechanical Effect”). For the damage-

minimizing planner, increases subsidies for these non-additional households entail a fiscal cost

with no additional decrease in damages. Therefore, the number of non-additional households

(Mj) enters negatively into the first order condition. The welfare-maximizing planner, on

the other hand, values the increase in utility associated with increases in subsidies for non-

additional households. Therefore, each additional dollar of subsidies for a non-additional

household is valued at (1− λ), reflecting both this increase in utility and the fiscal cost.

C Results Appendix: For Online Publication

C.1 Installation Prices

Table A3 shows the results for estimating solar system installation prices using the Tracking

the Sun data using the following regression,

pInsR(j) (Ni) = p0,InsR(j) + p1,InsR(j)Ni + εij, (24)

where p0,InsR(j) is a fixed cost and p1,InsR(j) is a per-panel cost, and R(j) is the Census Region

containing state j. The table shows results for the full sample and each region, where the

intercept gives the fixed installation cost, and the coefficient on the number of panels is the

per-panel cost. The linear model is a good fit for the data, as seen in Figure A6, which shows

our fitted line against a flexible smoothing function for each region.
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Dep. Var.: Total Cost

Census Region Full sample Midwest Northeast South West

Model: (1) (2) (3) (4) (5)

Variables

(Intercept) 5,960.9∗∗∗ 10,129.9∗∗∗ 3,558.1∗∗∗ 7,772.5∗∗∗ 6,295.5∗∗∗

(28.8) (610.0) (57.0) (283.1) (33.9)

Num. Panels 1,078.7∗∗∗ 1,051.7∗∗∗ 1,156.7∗∗∗ 823.6∗∗∗ 1,071.5∗∗∗

(1.4) (27.7) (2.4) (11.9) (1.8)

Fit statistics

Observations 1,273,431 1,097 254,336 22,245 995,753

R2 0.55 0.53 0.67 0.54 0.51

Adjusted R2 0.55 0.53 0.67 0.54 0.51

Heteroskedasticity-robust standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table A3: Solar system installation prices.

Figure A6: Estimation results for solar system price regression, where the dashed black line is our estimated
model and the solid blue line shows the fit of a generalized additive model.
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(1) (2) (3) (4) (5) (6)

Monetary Benefits 0.105*** 0.104*** 0.0793*** 0.0820*** 0.0865*** 0.0892***

(0.0332) (0.0330) (0.0158) (0.0186) (0.0157) (0.0176)

Observations 41,776 41,776 41,776 41,776 41,776 41,776

R-squared 0.187 0.201 0.388 0.411 0.421 0.445

Demographic Controls NO YES NO YES NO YES

Region FE NO NO YES YES NO NO

Division FE NO NO NO NO YES YES

*** p<0.01, ** p<0.05, * p<0.1

Table A4: Regression of log installations on the net present value of total monetary benefits associated with
solar panel installations. Monetary benefits measured in thousands of dollars. Standard errors clustered by
state.

C.2 Relationship Between Installations and Monetary Incentives

Table A4 regresses tract-level log installations on the monetary benefits of installation, where

again we calculate the monetary benefits of installation as µij (N
⋆
i ) evaluated at N⋆

i = 15, the

average number of panels in a solar system in the data. Specifications with “Demographic

Controls” include controls for tract-level college completion percentage and percent democrat.

Columns (3) and (4) add Census region fixed effects while columns (5) and (6) include Census

division fixed effects. Across all specifications, we find that a $1000 increase in monetary

benefits for a 15-panel installation is associated with a 7.9% to 10.5% increase in installations.

C.3 Border Discontinuities in Household Characteristics

Here, we look for evidence of sorting based on preferences for solar panels on either side

of state borders. For each graph, we regress the variable in question on state-border fixed

effects and dummy variables for these locations bins and plot these estimated location fixed

effects. Figures A7a, A7b, and A7c plot these fixed effects for percent with college degree,

percent democrat, and average household income, respectively. There is no clear pattern in

these characteristics on either side of the border.

C.4 Power Plant Model

Here we present additional information about the power plant model estimation results.

Figures A8 and A9 show the model fit graphs for the main paper, broken out into regions

and evaluated on out-of-sample data from 2020. These show that model performance is

consistent within each interconnection. A10 shows how fuel mix varies for each region.
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(a) Percent College Degree (b) Percent Democrat (c) Average Household Income

Figure A7: Border Discontinuities in Household Characteristics. For each graph, we regress the variable in
question on state-border fixed effects and dummy variables for these locations bins and plot these estimated
location fixed effects.

Figure A8: Model fit at the region level, excluding Texas as there is only one region in the Texas inter-
connection. Dots represent an hour of production for each region in 2020, smoothed lines show the fit of a
generalized additive model.
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Figure A9: Model fit at the region level by hour and season in 2020.
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Figure A10: Fuel mix of production by region. The X-axis gives excess load at the interconnection level and
the Y-axis gives the percent of electricity production that is produced by each of the fuel types using data
from 2020. The dashed lines show the fuel mix in the data while the solid lines show the simulated fuel mix.

C.5 Type of Subsidy in Optimal System

We now analyze how the government should optimally allocate subsidies across the three

subsidy types: cost-based subsidies, per-panel subsidies, and production-based (per-kWh)

subsidies. To facilitate comparison, we calculate the present discounted value an “average

installation” would receive. Specifically, we calculate the subsidy value every household in

the model would receive if they purchased a 15-panel installation.69 We then average this

hypothetical subsidy value over all households. Table A5 shows the percent of the total

subsidy value coming from each subsidy type in each simulation. Under the current system,

69We define households as rooftops suitable for solar panel installations as defined by GPS data.

(1) (2) (3)

State-Specific Subsidies

Baseline Welfare Max Damage Min

Unit Subsidies 6.76 0.08 0.59

Cost Subsidies 81.60 0.18 1.18

kWh Subsidies 8.06 99.74 98.23

Total 100.00 100.00 100.00

Table A5: Percent of total subsidy value from each type of subsidy for a 15-panel installation averaged across
all households in the model. Each column shows the subsidy values for a different simulation.
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(1) (2) (3) (4) (5)

State-Specific Subsidies Tract-Specific Subsidies

Baseline Welfare Max Damage Min Welfare Max Damage Min

I. Average Number of Panels per installation

Midwest 14.81 14.84 14.85 14.84 14.85

Northeast 14.85 14.85 14.86 14.85 14.86

South 14.81 14.84 14.84 14.84 14.84

West 14.83 14.84 14.82 14.84 14.82

Table A6: Each entry gives the average number of solar panels in a solar installation across Census regions
in each model simulation.

over 80% of the value of subsidies comes from cost-based subsidies, which include the fed-

eral investment tax credit, state investment tax credits, sales tax exemptions, and property

tax exemptions. On the other hand, the welfare-maximizing subsidies almost exclusively

consist of production-based subsidies. Intuitively, production-based subsidies incentivize in-

stallations for households where sunlight, and therefore environmental benefits, are high.70

However, as we show in Section 6.5, the gains to reallocating across subsidy types within

states are small relative to the gains from reallocating subsidies across states.

C.6 Average Panel Size Across Counterfactuals

Table A6 shows the average number of panels per installation across Census regions in each

simulation. We can see that panel size does not significantly change across regions or across

simulations. These results suggest that extensive-margin adjustments shown in the body

of the paper play a much more important role quantitatively than the intensive-margin

adjustments shown here.

C.7 State-Level Results

The first columns of Table A7 gives the baseline and welfare-maximizing subsidy in each

state. The following columns show the simulated number of solar panel installations per

1000 households under the current subsidies and under the welfare-maximizing subsidies.

The first two columns of Table A8 shows the state-level subsidies given the current system

and the damage-minimizing subsidies. The following columns of Table A8 show the simulated

70One important caveat is that we assume households’ discount rate is given by the inverse of the real
interest rate. De Groote and Verboven (2019) find that households use a much higher implicit interest rate
than the market interest rate when evaluating the future benefits of solar panel installations. Therefore,
upfront investment subsidies are more cost-effective than production subsidies at inducing installations. It
would be straightforward to examine the robustness of our results to alternative values for the household
discount rate.
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Table A7: The first two columns shows the state-level subsidies given the current system and the welfare-
maximizing subsidies. Subsidies are measured as the average present discounted value of subsidies for a
15-panel installation, measured in thousands of dollars. The following columns show the simulated number
of solar panel installations per 1000 households given the current subsidies and under the welfare-maximizing
subsidies.
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number of solar panel installations per 1000 households given the current subsidies and under

the damage-minimizing subsidies.

C.8 Unconstrained Optimal Subsidies

Theory We define welfare as

W =

∫
i

Vidi︸ ︷︷ ︸
Utility

−D (ELoad)︸ ︷︷ ︸
Damages

−
∑
j

∫
i∈Ij

sijm
⋆
i di︸ ︷︷ ︸

Government Cost

. (25)

The optimal system of subsidies must satisfy ∂W
∂sθj

= 0 for each type of subsidy in each

state, which implies

∂Mj

∂sθj
×
(−−→
∆Dθ,ext

j −−→s θ,ext
j

)
︸ ︷︷ ︸

Extensive Margin

+
∂Nj

∂sθj

∣∣∣∣∣
Mst

j

×

(
−−→
∆Dθ,int

j −
−−→
∂s

∂N
θ,int
j

)
︸ ︷︷ ︸

Intensive Margin

= 0, (26)

where all objects are as defined in Section 2.3.

The optimal policy balances two forces: 1) the decrease in damages and 2) the increase

in cost due to an increase in the number of panel installed, through both extensive and

intensive margin adjustments. Importantly, note that household utility does not show up in

this formula. This is because there is no first-order welfare effect on households for marginal

households (i.e. households who choose to install solar panels in response to the increase in

subsidies) because of the envelope theorem. Further, the utility increase for non-additional

households (i.e. households who already chose to install solar panels before the increase in

subsidies) associated with receiving a larger subsidy for existing panels is exactly offset by

the cost of increasing subsidies for these households.71

Results Table A9 the baseline and optimal subsidy in each state. Optimal subsidies are

lowest in Washington and Oregon, at slightly above $2,000. Optimal subsidies are over

3 times as high in most of the Mid-Atlantic, with the highest subsidies at over $7,000 in

Delaware and Maryland. Optimal subsidies exceed current subsidies in only Pennsylvania,

West Virginia, and Maine.

71This is a direct consequence of 1) quasilinear utility and a utilitarian welfare function with equal Pareto
weights, which together imply that marginal social welfare weights (Saez and Stantcheva, 2016) are equalized
and there are no effects of total welfare of wealth redistribution, and 2) the assumption of that the marginal
cost of public funds is equal to one: the social planner values an increase in consumption for a given household
the same as an increase in government revenue.
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Table A8: The first two columns shows the state-level subsidies given the current system and the damage-
minimizing subsidies. Subsidies are measured as the average present discounted value of subsidies for a
15-panel installation, measured in thousands of dollars. The following columns show the simulated number
of solar panel installations per 1000 households given the current subsidies and under the damage-minimizing
subsidies.

22



Expected Subsidy Expected Subsidy

Baseline Optimal Baseline Optimal

Alabama 5.6 4.6 Nebraska 8.8 4.3

Arizona 11.5 3.4 Nevada 6.8 3.3

Arkansas 5.6 4.3 New Hampshire 19.2 6.1

California 12.0 3.1 New Jersey 29.0 6.9

Colorado 9.8 3.0 New Mexico 11.0 3.5

Connecticut 16.9 6.1 New York 18.6 6.2

Delaware 9.8 7.1 North Carolina 8.6 4.6

Florida 10.0 4.9 North Dakota 11.6 3.9

Georgia 5.6 4.6 Ohio 7.5 6.7

Idaho 7.7 2.7 Oklahoma 5.6 4.6

Illinois 13.5 6.4 Oregon 11.5 2.2

Indiana 11.1 6.9 Pennsylvania 6.2 6.8

Iowa 19.6 4.0 Rhode Island 17.0 6.2

Kansas 13.6 4.4 South Carolina 9.1 4.7

Kentucky 6.1 4.3 South Dakota 13.1 3.7

Louisiana 15.0 4.4 Tennessee 7.4 4.4

Maine 5.8 6.1 Texas 15.7 3.6

Maryland 12.2 7.1 Utah 8.2 2.9

Massachusetts 25.6 6.1 Vermont 14.0 5.9

Michigan 7.2 3.8 Virginia 5.6 4.9

Minnesota 14.0 3.9 Washington 19.1 2.1

Mississippi 5.6 4.6 West Virginia 5.6 6.8

Missouri 10.9 4.2 Wisconsin 19.2 5.9

Montana 9.4 2.5 Wyoming 6.2 2.8

Table A9: The first two columns shows the state-level subsidies given the current system and the uncon-
strained optimal subsidies. Subsidies are measured as the average present discounted value of subsidies for a
15-panel installation, measured in thousands of dollars. The following columns show the simulated number
of solar panel installations per 1000 households given the current subsidies and under the welfare-maximizing
subsidies.
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(1) (2) (3) (3)

No Add Add Add

Demographics % College % Democrat % Homeowner

I. ∆ Average Subsidy ($Thousands)

Midwest 4.5 3.9 4.0 4.1

Northeast -0.8 -1.5 -1.4 -1.2

South 4.0 3.5 3.6 3.7

West -0.1 -0.4 -0.3 -0.1

II. ∆ Installations per 1000HHs

Midwest 1.8 1.3 1.4 1.5

Northeast -4.9 -3.6 -3.8 -4.0

South 2.3 1.8 1.8 1.8

West -0.1 -0.2 -0.2 -0.1

III. ∆ Annual Damages Offset ($Millions)

Total 5.2 4.1 4.1 4.1

Table A10: Counterfactual results under alternative model specifications. Each entry shows the change
of moving from the current system of subsidies to the optimal cost-neutral system of subsidies given the
specification in question. The first panel shows the change in the average present discounted value of subsidies
for a 15-panel installation for each census region. The second panel gives the change in the simulated number
of solar installations per 1000 households in the model for each Census region. The final panel gives the
change in total damages offset by rooftop solar. See text for details on each model specification.

D Extensions and Robustness Appendix: For Online

Publication

D.1 Alternative Specifications of Household Utility

Table A10 recalculates our main results under alternative specifications of household utility.

Each entry shows the change in average subsidies, installations, and environmental benefits

associated with moving from the current system of subsidies to the welfare-maximizing system

of subsidies, given the specification in question. Column (1) considers a specification in which

the nonpecuniary component does not depend on tract-level demographics. In (2), we add the

tract-level fraction of individuals with a college education. In (3), we also add the fraction

of democrat voters, and in (4), we add the homeownership rate. Note that Column (3)

is the same as our baseline specification. The results are qualitatively very similar across

specifications.
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D.2 Line Losses

We use the methodology from Borenstein and Bushnell (2022) to account for line losses be-

tween the power plant and households. Formally, losses for each region come from a constant

plus a factor proportional to the square of flow on the line: LRt = α1R+α2R

(
LoadRt − ESolar

Rt

)2
.

Note that the parameters α1R and α2R are both allowed to vary by region to reflect differ-

ences in grid characteristics across regions. We then adjust excess load by those losses,

ELoadLL
Rt = LoadRt − ENonD

Rt − ESolar
Rt + LRt. Losses enter positively since power plants must

produce not only the amount of electricity demanded by households but also must make up

for the losses incurred in transporting electricity to the household. Adding line losses changes

the marginal damages offset by residential solar to

∣∣∣∣∂D (ELoad)

∂Ni

∣∣∣∣ = T∑
t=0

1

(1 + r)t
Ait

(
1 + 2α2R

(
LoadRt + ESolar

Rt

)) ∣∣∣∣ ∂Dt (·)
∂ELoadRt

∣∣∣∣ .
The installation of solar panels now has two benefits. As we have in our primary model, so-

lar panels reduce the electricity demand fulfilled by power plants, generating benefits equal to

the electricity produced by a panel, Ait, times the change in damages,
∣∣∣ ∂Dt(·)
∂ELoadRt

∣∣∣. Now, there is
an additional benefit from offsetting line losses, captured by the term 2α2R

(
LoadRt − ESolar

Rt

)
,

which is the marginal change in losses. Including line losses increase the average damages

offset by marginal installers,
−−→
∆Dθ,ext

j , and by intensive margin installers,
−−→
∆Dθ,int

j , when cal-

culating optimal subsidies.72

Borenstein and Bushnell (2022) estimate line losses as a proportion of total production

for over 1,600 utilities in the United States. We take the weighted average of these estimates

to create values for each region, weighting by the total electricity production of each utility.

Let γR be line losses as a proportion of total production in region R. We then follow their

assumption that 25% of line losses are independent of flow on the line, which allows us to

back out α1 = 0.25γR
∑

t

(
LoadRt − ESolar

Rt

)
and α2 = 0.75γR

∑
t(LoadRt−ESolar

Rt )∑
t(LoadRt−ESolar

Rt )
2 .

Results The results are summarized in Table A11. The first column gives cost-neutral

subsidies, installations, and damages offset given the current system of subsidies when we

account for line losses. The annual damages offset are slightly larger than the baseline model

in which we do not account for line losses.

The following summarize the results under (2) state-specific welfare-maximizing subsi-

dies, (3) state-specific damage-minimizing subsidies, (4) state-specific unconstrained optimal

subsidies. In all three counterfactuals, the subsidies and installations are similar to those in

72One caveat is that we do not adjust electricity production from solar panels to account for line losses
when residential solar panels transmit electricity back into the grid.
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(1) (2) (3) (4)

State-Specific Subsidies

Baseline Welfare Max Damage Min Unconstrained

I. Average Subsidy ($Thousands)

Midwest 11.3 15.8 16.8 6.0

Northeast 18.2 17.6 22.3 7.1

South 10.4 14.1 11.5 4.9

West 12.0 11.9 3.7 3.3

II. Installations per 1000HHs

Midwest 4.9 6.6 8.1 3.0

Northeast 18.8 14.0 20.0 6.1

South 7.1 9.3 8.1 4.4

West 11.9 11.9 6.5 6.0

National 9.7 10.2 9.4 4.9

III. Annual Damages Offset ($Millions)

Total 126.6 132.3 138.6 61.8

Table A11: Optimal subsidies when accounting for line losses. The first panel shows the average present
discounted value of subsidies received for a 15-panel installation for each census region. The second panel
gives the simulated number of solar installations per 1000 households in the model for each Census region.
Households are defined as rooftops which are suitable for solar panel installations as defined by GPS data.
The final panel gives the total damages offset by rooftop solar.

the baseline model when we do not account for line losses. However, the environmental gains

are slightly larger than in the baseline model.

D.3 Improved Storage of Nondispatchable Electricity

Because of intermittent nature of many renewable energy sources, times when renewable

energy generation is high may not correspond with times when electricity demand is high.

Improvements in energy storage technology would allow electricity generated by nondis-

patchable energy sources to be stored for times when it is most needed. What would be

the environmental benefits of these improvements in energy storage technology? And how

would the introduction of improved electricity storage technology change the optimal system

of solar subsidies?

As a simple way to try to answer these questions, we consider a setting in which elec-

tricity produced by nondispatchable sources (including household solar) can be imperfectly

reallocated over time. Specifically, given the total amount of electricity produced by nondis-

patchable sources in a year, we assume a proportion ω of this electricity is reallocated over

time such that the profile of usage of this reallocated electricity is proportional to electricity
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demand.73 Formally, we write excess demand as

ELoadstorage
Rt =

1− ω
(
ANonD

R + ASolar
R

)︸ ︷︷ ︸
Reallocated Electricity

LoadRt − (1− ω)
(
ENonD

Rt + ESolar
Rt

)︸ ︷︷ ︸
Non-Reallocated Electricity

where ANonD
R =

∑
t E

NonD
Rt∑

t LoadRt
and ASolar

R =
∑

t E
Solar
Rt∑

t LoadRt
are region-specific constants which ensure

that total amount of nondispatchable energy utilized is equal to total nondispatchable energy

generated.74

Results We calculate the environmental benefits of this improved storage technology and

the optimal subsidies given the new storage technology for three values of ω in Table A12.

Column (2), for example, shows the effects of this alternative storage technology with ω = .25,

holding the system of solar subsidies at their current levels. As subsidies do not change, the

distribution of installations is the same as in the case without storage technology. Panel III

shows that the improved storage technology leads to a decrease in environmental damages

valued at over $60 million annually. Column (3) recalculates the optimal cost-neutral subsi-

dies given that the new storage technology is in place. We find that the optimal subsidies are

very similar to the baseline case and that implementing the optimal subsidies leads to similar

reductions in environmental damages as we find without the improved storage technology.

Column (4) shows the unconstrained optimal subsidies given the new storage technology.

The optimal unconstrained optimal subsidies are nearly identical to the baseline case.

The remaining columns repeat this exercise for ω = .5 and ω = .75. In both scenarios, we

find large environmental benefits to the new technology. However, the optimal subsidies and

the environmental benefits associated with implementing those subsidies are very similar to

those in the baseline case.

D.4 Cleaner Electricity Production

We present our results when we allow changes in electricity production in Table A13. The

first column gives the results under the current technology, as in our baseline results. The first

panel gives the change in average subsidy, measured in thousands of dollars when moving from

the current subsidies to the cost-neutral welfare-maximizing subsidies. The second panel gives

73This is highly stylized model of electricity storage. More generally, optimal storage and withdrawal of
electricity will depend on the distribution of the cost of electricity production by other sources over time
and space. See Holland, Mansur, and Yates (2022) for a richer model of electricity storage. It would be
straightforward to only be reallocated within the same day it is generated.

74Similar to Holland, Mansur, and Yates (2022), we assume that there are no electricity losses associated
with electricity storage, e.g. from charging batteries or decay of electricity over time.
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Table A12: Optimal cost-neutral and unconstrained subsidies with improved storage technology. The first
panel shows the average present discounted value of subsidies received for a 15-panel installation for each
census region. The second panel gives the simulated number of solar installations per 1000 households in the
model for each Census region. The third panel gives the total damages offset by rooftop solar and by the
increased storage technology of renewable energy. The final panel gives total government cost under each
subsidy scheme converted to an annuity value.
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the change in installations per 1000 households. The final panel gives the percentage change

in environmental benefits when moving from the current to welfare-maximizing subsidies. As

before, we can see that moving to the welfare-maximizing cost-neutral subsidies given the

baseline technology leads to an increase in environmental benefits of 4.5%.

The next three columns show the results when we recalculate welfare-maximizing subsi-

dies given that the scale of utility-scale solar and wind expand based on three scenarios of

projected renewable expansion by 2030 from the EIA (Nalley and LaRose, 2022). Specifically,

we expand wind and solar based on their “reference case” projection, low-cost projection, and

high cost-projection. The high-cost scenario is associated with the smallest increase in utility-

scale solar and wind production, while the low-cost scenario is associated with the largest

increases.75 We refer to their reference case projection as the mid-cost projection. Across the

three scenarios, we find that moving to the welfare-maximizing cost-neutral subsidies leads

to a 7.2-7.8% increase in aggregate environmental benefits.

In the fifth column, we recalculate results considering each coal plant to have “cleaned up”

by adjusting marginal damages from coal plants so that the distribution of marginal damages

from coal plants matches that of natural gas plants. Moving to the welfare-maximizing cost-

neutral subsidies leads to a 3.0% increase in aggregate environmental benefits in this case.

Columns 6 through 10 repeat this exercise with unconstrained optimal subsidies. In all

cases, current subsidies are all massively overfunded relative to the optimum. Moving to

unconstrained optimal subsidies involves cutting funding for subsidies by 85.7% to 90.6%

across specifications.

75Specifically, utility-scale solar increases by roughly 200%, 350%, and 500% in the three scenarios, while
wind increases by 45%, 50%, and 55%.
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Table A13: Optimal cost-neutral and unconstrained subsidies under alternative assumptions about central
generation energy production. Each entry of Columns (1) through (4) shows the change of moving from the
current system of subsidies to the welfare-maximizing cost-neutral system of subsidies given the specification
in question. Each entry of Columns (5) through (8) shows the change of moving from the current system of
subsidies to the unconstrained optimal system of subsidies given the specification in question. See text for
details on each model specification.
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